2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 64Vision 2023: Feasibility Analysis of Turkey's Renewable Energy Projection(Pergamon-elsevier Science Ltd, 2013) Melikoglu, MehmetElectricity consumption of Turkey at the year 2023 is estimated to be around 530,000 GWh. Turkey plans to supply 30% or 160,000 GWh of this demand from renewable energy sources according to the recently avowed government agenda Vision 2023. However, the current installed renewable energy capacity is around 60,000 GWh. Detailed literature analysis showed that only wind and solar energy potential in Turkey can solely supply this demand. In this study, two different scenarios were generated to analyse the cost and environmental impacts of supplying this demand. Scenario 1, which is derived from the official Vision 2023 targets, suggests supplying this demand from wind, solar, geothermal energy and hydropower. The total projected cost based on Scenario 1 is estimated to be $31.000 billion and annual greenhouse gas emissions of 1.05 million tonnes of CO2 equivalent. According to Scenario 2 or the contrary setup it is assumed that the required demand gap could not be supplied from new renewable energy investments but equally from coal and natural gas. The projected cost is estimated to be around $8.000 billion and annual greenhouse gas emissions at appalling 71.30 million tonnes of CO2 equivalent. Assuming carbon tax at the year 2023 to be $50 per tonne of CO2 emitted, supplying the demand from renewable energy sources according to Scenario 1 would generate savings worth nearly $2.175 billion from environmental taxes annually. Thus, making the payback time of the renewable energy investments less than 15 years. (C) 2012 Elsevier Ltd. All rights reserved.Article Citation - WoS: 11Citation - Scopus: 18Prospects of Ocean-Based Renewable Energy for West Africa's Sustainable Energy Future(Emerald Group Publishing Ltd, 2021) Adesanya, Ayokunle; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, RobertasPurpose The limited supply of fossil fuels, constant rise in the demand of energy and the importance of reducing greenhouse emissions have brought the adoption of renewable energy sources for generation of electrical power. One of these sources that has the potential to supply the world's energy needs is the ocean. Currently, ocean in West African region is mostly utilized for the extraction of oil and gas from the continental shelf. However, this resource is depleting, and the adaptation of ocean energy could be of major importance. The purpose of this paper is to discuss the possibilities of ocean-based renewable energy (OBRE) and analyze the economic impact of adapting an ocean energy using a thermal gradient (OTEC) approach for energy generation. Design/methodology/approach The analysis is conducted from the perspective of cost, energy security and environmental protection. Findings This study shows that adapting ocean energy in the West Africa region can significantly produce the energy needed to match the rising energy demands for sustainable development of Nigeria. Although the transition toward using OBRE will incur high capital cost at the initial stage, eventually, it will lead to a cost-effective generation, transmission, environmental improvement and stable energy supply to match demand when compared with the conventional mode of generation in West Africa. Originality/value The study will contribute toward analysis of the opportunities for adopting renewable energy sources and increasing energy sustainability for the West Africa coast regions.

