6 results
Search Results
Now showing 1 - 6 of 6
Conference Object Citation - Scopus: 25A Comparison of Stream Processing Frameworks(Institute of Electrical and Electronics Engineers Inc., 2017) Karakaya,Z.; Yazici,A.; Alayyoub,M.This study compares the performance of Big Data Stream Processing frameworks including Apache Spark, Flink, and Storm. Also, it measures the resource usage and performance scalability of the frameworks against a varying number of cluster sizes. It has been observed that, Flink outperforms both Spark and Storm under equal constraints. However, Spark can be optimized to provide the higher throughput than Flink with the cost of higher latency. © 2017 IEEE.Conference Object A Comparison of Stream Processing Frameworks(Institute of Electrical and Electronics Engineers Inc., 2017) Karakaya,Z.; Yazici,A.; Alayyoub,M.This study compares the performance of Big Data Stream Processing frameworks including Apache Spark, Flink, and Storm. Also, it measures the resource usage and performance scalability of the frameworks against a varying number of cluster sizes. It has been observed that, Flink outperforms both Spark and Storm under equal constraints. However, Spark can be optimized to provide the higher throughput than Flink with the cost of higher latency. © 2017 IEEE.Conference Object Citation - WoS: 28A Comparison of Stream Processing Frameworks(Ieee, 2017) Karakaya, Ziya; Yazici, Ali; Alayyoub, MohammedThis study compares the performance of Big Data Stream Processing frameworks including Apache Spark, Flink, and Storm. Also, it measures the resource usage and performance scalability of the frameworks against a varying number of cluster sizes. It has been observed that, Flink outperforms both Spark and Storm under equal constraints. However, Spark can be optimized to provide the higher throughput than Flink with the cost of higher latency.Conference Object Systematic Mapping for Big Data Stream Processing Frameworks(Ieee, 2016) Alayyoub, Mohammed; Yazici, Ali; Karakaya, ZiyaThere has been lots of discussions about the choice of a stream processing framework (SPF) for Big Data. Each of the SPFs has different cutting edge technologies in their steps of processing the data in motion that gives them a better advantage over the others. Even though, the cutting edge technologies used in each stream processing framework might better them, it is still hard to say which framework bests the rest under different scenarios and conditions. in this study, we aim to show trends and differences about several SPFs for Big Data by using the Systematic Mapping (SM) approach. To achieve our objectives, we raise 6 research questions (RQs), in which 91 studies that conducted between 2010 and 2015 were evaluated. We present the trends by classifying the research on SPFs with respect to the proposed RQs which can help researchers to obtain an overview of the field.Conference Object Citation - Scopus: 2Systematic Mapping for Big Data Stream Processing Frameworks(Institute of Electrical and Electronics Engineers Inc., 2016) Alayyoub,M.; Yazıcı, Ali; Yazici,A.; Karakaya,Z.; Karakaya, Ziya; Yazıcı, Ali; Karakaya, Ziya; Software Engineering; Computer Engineering; Software Engineering; Computer EngineeringThere has been lots of discussions about the choice of a stream processing framework (SPF) for Big Data. Each of the SPFs has different cutting edge technologies in their steps of processing the data in motion that gives them a better advantage over the others. Even though, the cutting edge technologies used in each stream processing framework might better them, it is still hard to say which framework bests the rest under different scenarios and conditions. In this study, we aim to show trends and differences about several SPFs for Big Data by using the Systematic Mapping (SM) approach. To achieve our objectives, we raise 6 research questions (RQs), in which 91 studies that conducted between 2010 and 2015 were evaluated. We present the trends by classifying the research on SPFs with respect to the proposed RQs which can help researchers to obtain an overview of the field. © 2016 IEEE.Master Thesis Sosyal Medyada Duygu Analizi : Karşılaştırmalı Bir Çalışma(2018) Gebreyesus, Yasmın Tesfaldet; Karakaya, Ziya; Yazıcı, AliDuygu Analizi, sosyal medya gönderileri gibi metin içeriğinin polaritesini tespit etme ve sınıflandırma görevidir. Twitter için duyarlılık analizi, çalışmaların açık veri setlerini kullanarak yürütüldüğü akademik çevrelerde popüler bir konu olmuştur. Mevcut son teknoloji ürünü sonuçlar, Destek Vektör Makineleri (SVM) gibi klasik Makine Öğrenme sınıflandırıcıları ve Sinir Ağları, yani Derin Öğrenme modelleri gibi son gelişmeler dahil olmak üzere çok çeşitli tekniklerle sağlanmıştır. Bu tezde, Büyük Veri çerçevelerini kullanarak Sosyal Medya için büyük ölçekli Duygu Analizi çalıştık. Motivasyonumuz, büyük veri kriterlerinin sınıflandırıcıların performansı üzerindeki etkisini araştıran çalışmaların çok az olduğu gözleminden kaynaklanmaktadır. Amaç, sadece son teknoloji ürünü sonuçlardan daha iyi performans gösteren bir model oluşturmak değil, gerçek zamanlı ve yüksek hacimli veri akışları altında çeşitli sınıflandırıcı algoritmalarını incelemektir. Bu amaçla, büyük veri çerçeveleri olan ve içermeyen çeşitli Duygu Analizi Modelleri uygularız ve büyük veri yapılarını kullanarak performans faydalarını veya kayıplarını karşılaştırırız. Özellikle iki deneme senaryosu oluşturduk. Her iki senaryoda, aynı veri kümesini kullanıyoruz, ilgili sınıflandırıcılar için mümkün olan en iyi sonuçları elde etmek için uygun veri ön işlemlerini ve özellik mühendisliği tekniklerini uyguluyoruz. Anahtar Kelimeler: Algı Analizi, Büyük Veri, Spark, Spark ML, Twitter, Derin Öğrenme, Twitter

