Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 12
    Citation - Scopus: 13
    Novel Pt(ii) Complexes Containing Pyrrole Oxime, Synthesis, Characterization and Dna Binding Studies
    (Elsevier, 2014) Erdogan, Deniz Altunoz; Ozalp-Yaman, Seniz
    Since the discovery of anticancer activity and subsequent clinical success of cisplatin (cis-[PtCl2(NH3)(2)]), platinum-based compounds have since been widely synthesized and studied as potential chemotherapeutic agents. In this sense, three novel nuclease active Pt(II) complexes with general formula; [Pt(NH3)CI(L)] (1), [Pt(L)(2)] (2), and K[PtCl2(L)] (3) in which L is 1-H-pyrrole-2-carbaldehyde oxime were synthesized. Characterization of complexes was performed by elemental analysis, FT-IR, H-1 NMR and mass spectroscopy measurements. Interaction of complexes (1-3) with calf thymus deoxyribonucleic acid (ct-DNA) was investigated by using electrochemical, spectroelectrochemical methods and cleavage studies. The hyperchromic change in the electronic absorption spectrum of the Pt(II) complexes indicates an electrostatic interaction between the complexes and ct-DNA. Binding constant values between 4.42 x 10(3) and 5.09 x 10(3) M-1 and binding side size values between 2 and 3 base pairs were determined from cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 20
    Citation - Scopus: 26
    Polybenzimidazole-Modified Carbon Nanotubes as a Support Material for Platinum-Based High-Temperature Proton Exchange Membrane Fuel Cell Electrocatalysts
    (Pergamon-elsevier Science Ltd, 2021) Eren, Enis Oguzhan; Ozkan, Necati; Devrim, Yilser
    We fabricate polybenzimidazole (PBI) wrapped carbon nanotubes (MWCNTs) as support material for platinum-based fuel cell electrocatalyst. With the aid of microwave-assisted polyol reduction, we obtain very fine platinum (Pt) nanoparticles on PBI/MWCNT support while reducing the amount of Pt waste during synthesis. Cyclic voltammetry (CV) concludes that Pt-PBI/MWCNT has 43.0 m(2) g(-1) of electrochemically active surface area (ECSA) to catalyze hydrogen oxidation. Furthermore, after the 1000th cycle, Pt-PBI/MWCNT preserves almost 80% of its maximum ECSA, meaning that Pt-PBI/MWCNT is much more durable than the Pt/MWCNT and commercial Pt/C. High-temperature proton exchange membrane fuel cell (HT-PEMFC) performance tests are conducted under H-2/Air conditions at the temperatures ranging from 150 degrees C to 180 degrees C. Nevertheless, tests conclude that the maximum power density values of the Pt-PBI/MWCNT are found inferior to the Pt/C at all temperatures (e.g., 47 vs. 62 mW cm(-2) at 180 degrees C), suggesting that some balance between durability and performance has to be taken into consideration. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Radicalic Cleavage Pathway and Dna Docking Studies of Novel Chemotherapic Platinum Agent of 5,6-Di
    (Pergamon-elsevier Science Ltd, 2019) El Hag, Rabia; Abdusalam, Mohamed Musbah; Acilan, Ceyda; Kayi, Hakan; Ozalp-Yaman, Seniz
    A new Pt(II) complex of the general formula ([PtCl2(L)]center dot H2O), where L is 5,6-di-2-thienyl-2,3-dihydropyrazine is synthesized as a potential antitumor agent and its structure is elucidated using a variety of physical and chemical procedures. DNA attaching ability of the complex is studied spectroscopically. UV and fluorometric titration, viscometric measurements and thermal decomposition studies agreed that two binding mode of actions, covalent and non-covalent bindings, are possible simultaneously. DNA helix cleavage studies clearly indicated OH center dot radical pathway in the presence of the reducing agent. Quantum mechanical calculations are carried out to call the minimum energy structures of the ligand and the complex, and to determine the FTIR, H-1 NMR and UV-Vis spectra using the density functional theory (DFT) at the B3LYP/LANL2DZ level of theory. Calculated geometrical parameters for the complex indicated a square-planar structure around the metallic center through the dithiopyridyl ring and two chlorine atoms. The minimum energy structure of the complex obtained from DFT conformational analysis is used in docking studies to investigate complex-DNA binding mechanisms. The complex interacts with DNA through three different mechanisms, namely, intercalation, covalent and electrostatic interaction. The most stable mode of interaction with lowest binding energy (-333.6 kcal/mol) was intercalation mode. Comparisons between theoretical and experimental findings are performed and a good agreement is obtained. (C) 2019 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Spectroelectrochemical Investigation of Nuclease Active Pt(II) Complexes Containing Pyrrole Oxime
    (Pergamon-elsevier Science Ltd, 2015) Erdogan, Deniz Altunoz; Kayi, Hakan; Ozalp-Yaman, Seniz
    In this paper, the electrochemical oxidation of three Pt(II) complexes containing pyrrole oxime (HL) having a general formula of [Pt(NH3)Cl(L)] (1), [Pt(L)(2)] (2), and K[PtCl2(L)] (3) has been investigated by in-situ spectroelectrochemistry in dimethylformamide (DMF). An irreversible metal-based oxidation process occurs during the anodic scan for each of the three complexes. The electronic absorption spectral changes indicate that all the three complexes generate similar Pt(IV) compounds and free ligand. Our experimental data is supported by quantum chemistry calculations utilizing density functional theory. In addition, the frontier orbital energy distributions indicate that electron densities are localized on mainly platinum atom. (C) 2015 Elsevier Ltd. All rights reserved.