2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 20Citation - Scopus: 26Polybenzimidazole-Modified Carbon Nanotubes as a Support Material for Platinum-Based High-Temperature Proton Exchange Membrane Fuel Cell Electrocatalysts(Pergamon-elsevier Science Ltd, 2021) Eren, Enis Oguzhan; Ozkan, Necati; Devrim, YilserWe fabricate polybenzimidazole (PBI) wrapped carbon nanotubes (MWCNTs) as support material for platinum-based fuel cell electrocatalyst. With the aid of microwave-assisted polyol reduction, we obtain very fine platinum (Pt) nanoparticles on PBI/MWCNT support while reducing the amount of Pt waste during synthesis. Cyclic voltammetry (CV) concludes that Pt-PBI/MWCNT has 43.0 m(2) g(-1) of electrochemically active surface area (ECSA) to catalyze hydrogen oxidation. Furthermore, after the 1000th cycle, Pt-PBI/MWCNT preserves almost 80% of its maximum ECSA, meaning that Pt-PBI/MWCNT is much more durable than the Pt/MWCNT and commercial Pt/C. High-temperature proton exchange membrane fuel cell (HT-PEMFC) performance tests are conducted under H-2/Air conditions at the temperatures ranging from 150 degrees C to 180 degrees C. Nevertheless, tests conclude that the maximum power density values of the Pt-PBI/MWCNT are found inferior to the Pt/C at all temperatures (e.g., 47 vs. 62 mW cm(-2) at 180 degrees C), suggesting that some balance between durability and performance has to be taken into consideration. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 3Spectroelectrochemical Investigation of Nuclease Active Pt(II) Complexes Containing Pyrrole Oxime(Pergamon-elsevier Science Ltd, 2015) Erdogan, Deniz Altunoz; Kayi, Hakan; Ozalp-Yaman, SenizIn this paper, the electrochemical oxidation of three Pt(II) complexes containing pyrrole oxime (HL) having a general formula of [Pt(NH3)Cl(L)] (1), [Pt(L)(2)] (2), and K[PtCl2(L)] (3) has been investigated by in-situ spectroelectrochemistry in dimethylformamide (DMF). An irreversible metal-based oxidation process occurs during the anodic scan for each of the three complexes. The electronic absorption spectral changes indicate that all the three complexes generate similar Pt(IV) compounds and free ligand. Our experimental data is supported by quantum chemistry calculations utilizing density functional theory. In addition, the frontier orbital energy distributions indicate that electron densities are localized on mainly platinum atom. (C) 2015 Elsevier Ltd. All rights reserved.

