2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 21Citation - Scopus: 21The Role of Defects on the Transition From Saturable Absorption To Nonlinear Absorption of Bi12geo20< Single Crystal Under Increasing Laser Excitation(Elsevier, 2022) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Yildiz, Elif Akhuseyin; Gasanly, Nizami; Elmali, AyhanThis work reports defect and input intensity dependent nonlinear optical behaviors of Bi12GeO20 (BGO) single crystal. Open aperture (OA) Z-scan experiments were performed with 532 nm excitation wavelength under 4 ns and 100 fs pulsed laser irradiation. Obtained data were fitted with a theoretical model considering one-photon, two-photon and free carrier absorption contributions to nonlinear absorption due to longer lifetime of localized defect states than that of used laser pulse durations. At low input intensities, the BGO single crystal showed saturable absorption (SA) behavior and transition to nonlinear absorption (NA) behavior observed with further increase of the input intensities both of pulse durations. At low input intensity, the OPA mechanism is dominant and results in SA by filling of the defect states due to defect state at around one photon energy (2.32 eV). At higher input intensity, multi-photon, two-photon and free carrier absorption become dominant mechanisms, and nonlinear absorption behavior was observed. The lowest saturation threshold was found as 1.36 x 1010 W/cm2 with nanosecond pulses. We have revealed the mechanisms contributing both SA and NA, and determined saturation intensity threshold and effective nonlinear absorption coefficients. Our findings indicate that the tails of defect states overlap in the energy band gaps especially in sufficiently disordered crystal. With this way, the spectral range for saturable absorption and nonlinear absorption can be broadened.Article Citation - WoS: 22Citation - Scopus: 22Wavelength Dependence of the Nonlinear Absorption Performance and Optical Limiting in Bi12tio20 Single Crystal(Elsevier, 2023) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Gasanly, Nizami; Elmali, AyhanIn this study, the influence of excitation wavelength and input intensity on the nonlinear absorption (NA) mechanism and optical limiting behavior of the Bi12TiO20 (BTO) single crystal were reported. The energy band gap of the BTO single crystal was obtained to be 2.38 eV. Urbach energy revealed that the single crystal has a highly defective structure. Open aperture (OA) Z-scan experiments were conducted at 532 and 1064 nm exci-tation wavelengths at various input intensities. Obtained experimental data were analyzed with a theoretical model considering one photon, two-photon and free carrier absorption contributions to NA. The obtained results revealed that the BTO single crystal possesses NA. The NA coefficient increased with increasing input intensity at 532 nm excitation wavelength, while it decreased with increasing input intensity at 1064 nm excitation wave-length. Due to the intense localized defect states distribution at the energy of 532 nm excitation wavelength within the band gap, increasing contribution to NA came from one photon absorption (OPA), sequential two -photon absorption (TPA) and free carrier absorption (FCA) with increasing input intensity. The filling of the defect states at 1064 excitation wavelength caused a reduction in NA due to increasing saturable absorption with increasing input intensity. TPA coefficients were also found from the fitting ignoring the defect states. As ex-pected, the values of the nonlinear absorption coefficient beta eff are higher than that of the TPA coefficients for both excitation wavelengths. The optical limiting threshold of the BTO single crystal was obtained to be 6.62 mJ/cm2. The results of the present works indicated that BTO single crystal can be used as a potential optical limiter.

