Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 22
    Citation - Scopus: 21
    Principal and Nonprincipal Solutions of Impulsive Differential Equations With Applications
    (Elsevier Science inc, 2010) Ozbekler, A.; Zafer, A.
    We introduce the concept of principal and nonprincipal solutions for second order differential equations having fixed moments of impulse actions is obtained. The arguments are based on Polya and Trench factorizations as in non-impulsive differential equations, so we first establish these factorizations. Making use of the existence of nonprincipal solutions we also establish new oscillation criteria for nonhomogeneous impulsive differential equations. Examples are provided with numerical simulations to illustrate the relevance of the results. (C) 2010 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Asymptotic Representation of Solutions for Second-Order Impulsive Differential Equations
    (Elsevier Science inc, 2018) Akgol, S. Dogru; Zafer, A.
    We obtain sufficient conditions which guarantee the existence of a solution of a class of second order nonlinear impulsive differential equations with fixed moments of impulses possessing a prescribed asymptotic behavior at infinity in terms of principal and nonprincipal solutions. An example is given to illustrate the relevance of the results. (C) 2018 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 4
    Second Order Oscillation of Mixed Nonlinear Dynamic Equations With Several Positive and Negative Coefficients
    (Amer inst Mathematical Sciences-aims, 2011) Ozbekler, Abdullah; Zafer, Agacik; Mathematics
    New oscillation criteria are obtained for superlinear and sublinear forced dynamic equations having positive and negative coefficients by means of nonprincipal solutions.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Forced Oscillation of Second-Order Nonlinear Differential Equations With Positive and Negative Coefficients
    (Pergamon-elsevier Science Ltd, 2011) Ozbekler, A.; Wong, J. S. W.; Zafer, A.
    In this paper we give new oscillation criteria for forced super- and sub-linear differential equations by means of nonprincipal solutions. (c) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Prescribed Asymptotic Behavior of Nonlinear Dynamic Equations Under Impulsive Perturbations
    (Springer Basel Ag, 2024) Zafer, Agacik; Dogru Akgol, Sibel
    The asymptotic integration problem has a rich historical background and has been extensively studied in the context of ordinary differential equations, delay differential equations, dynamic equations, and impulsive differential equations. However, the problem has not been explored for impulsive dynamic equations due to the lack of essential tools such as principal and nonprincipal solutions, as well as certain compactness results. In this work, by making use of the principal and nonprincipal solutions of the associated linear dynamic equation, recently obtained in [Acta Appl. Math. 188, 2 (2023)], we investigate the asymptotic integration problem for a specific class of nonlinear impulsive dynamic equations. Under certain conditions, we prove that the given impulsive dynamic equation possesses solutions with a prescribed asymptotic behavior at infinity. These solutions can be expressed in terms of principal and nonprincipal solutions as in differential equations. In addition, the necessary compactness results are also established. Our findings are particularly valuable for better understanding the long-time behavior of solutions, modeling real-world problems, and analyzing the solutions of boundary value problems on semi-infinite intervals.