Search Results

Now showing 1 - 4 of 4
  • Article
    Effectiveness of Boric Acid in Sepsis in Rats With Cecal Perforation
    (Springer Nature, 2025) Kurtipek, Ali Can; Dursun, Ali Dogan; Yigman, Zeynep; Ozdemir, Cagri; Kucuk, Aysegul; Gonullu, Ugur; Arslan, Mustafa
    Introduction and AimSepsis is a systemic inflammatory response that develops in the host against microorganisms, which results in end-organ damage. Boric acid (BA) has been shown to have immune modulatory effects in vitro and in animal studies. The aim of the study is to investigate the effects of high dose BA on lung and kidney tissues in rats with sepsis induced by the CLP method.Method28 rats were randomly divided into four groups: Group C (control group), Group BA, Group CLP (cecal ligation and puncture), and Group CLP + BA. Cecum was ligated below the ileocecal valve and punctured. BA was administered to the treatment groups at an intraperitoneal dose of 200 mg/kg, and at the end of 24 h, lung and kidney tissue samples were collected and evaluated for biochemical and histopathological parameters.ResultsHistopathologically, in kidney tissue, CLP + BA group showed significantly less peritubular capillary dilatation and brush border loss in the proximal tubule epithelium compared to the CLP group. In lung tissue, CLP + BA group had significantly less alveolar wall thickening compared to the CLP group. Biochemical analyses indicated that BA administration reduced oxidative stress in both renal and lung tissues.ConclusionWe found that intraperitoneal administration of high dose boric acid partially ameliorated the tissue damage in rats subjected to CLP induced sepsis. Further studies are needed regarding the dosage and application at different time points.
  • Article
    Organ-Protective Effects of Fullerenol and Desflurane in a Rat Model of Ischemia–Reperfusion Injury
    (Nature Portfolio, 2025) Kip, Gulay; Koksal, Zeynep; Yigman, Zeynep; Kucuk, Aysegul; Arslan, Mustafa; Akarca Dizakar, Saadet Ozen; Sivgin, Volkan
    To investigate the protective effects of fullerenol applied before ischemia induction and desflurane anesthesia applied during ischemia-reperfusion (IR) induction in the lungs and kidneys of a lower-extremity IR injury rat model. After receiving ethical approval, we randomly divided 30 rats into five groups: sham (S), IR, IR with 100 mg/kg fullerenol (IR-FUL), IR with 6.7% desflurane (IR-DES), IR with 100 mg/kg fullerenol and 6.7% desflurane (IR-FUL-DES). Fullerenol was administered 30 min before the IR procedure in the IR-FUL and IR-FUL-DES groups, and desflurane was administered during the IR procedure in the IR-DES and IR-FUL-DES groups. During the procedure, an atraumatic microvascular clamp was placed in the aorta for 120 min. The clamp was then removed to achieve reperfusion for 120 min. Finally, at the end of reperfusion, we evaluated the extracted lung and kidney tissue samples and assessed them biochemically and histopathologically. The lung damage scores of the IR-FUL, IR-DES, and IR-FUL-DES groups were significantly lower than those of the IR group (p < .0001, p = .002, and p < .0001, respectively). The renal tubule injury scores of the IR, IR-FUL, IR-DES, and IR-FUL-DES groups were significantly higher than those of the S group (p < .0001). By contrast, the renal tubule injury scores of the IR-FUL and IR-FUL-DES groups were significantly lower than those of the IR group (p < .0001 and p = .001, respectively). Moreover, kidney intercellular adhesion molecule 1 (ICAM1) expression was significantly lower in all the treatment groups, particularly the IR-FUL group, than in the IR group, and lung ICAM1 expression was significantly lower in the IR-FUL and IR-FUL-DES groups than in the other treatment groups. In the lung and kidney tissues, thiobarbituric acid reactive substance levels, catalase activity, glutathione-S-transferase activity, and arylesterase activity were relatively high in the treatment groups. The application of fullerenol before and after desflurane anesthesia during IR has protective effects on rat lungs and kidneys. In particular, histopathology confirmed that the application of fullerenol 30 min before IR induction and desflurane anesthesia during IR induction reduced oxidative stress and alleviated IR-related damage in the lungs and kidneys. These findings may have important translational relevance, suggesting potential perioperative strategies for protecting organs from ischemia-reperfusion injury in clinical settings.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 12
    Protective Effects of BPC 157 on Liver, Kidney, and Lung Distant Organ Damagein Rats with Experimental Lower-Extremity Ischemia–Reperfusion Injury
    (MDPI, 2025) Demirtas, Hueseyin; Ozer, Abdullah; Yildirim, Alperen Kutay; Dursun, Ali Dogan; Sezen, Saban Cem; Arslan, Mustafa
    Background and Objectives: Ischemia–reperfusion (I/R) injury can affect multiple distant organs following I/R in the lower extremities. BPC-157’s anti-inflammatory and free radical-neutralizing properties suggest its potential in mitigating ischemia–reperfusion damage. This study evaluates the protective effects of BPC-157 on remote organ damage, including the kidneys, liver, and lungs, in a rat model of skeletal muscle I/R injury. Materials and Methods: A total of 24 male Wistar albino rats were randomly divided into four groups: sham (S), BPC-157(B), lower extremity I/R(IR) and lower extremity I/R+BPC-157(I/RB). Some 45 min of ischemia of lower extremity was followed by 2 h of reperfusion of limbs. BPC-157 was applied to groups B and I/RB at the beginning of the procedure. After 2 h of reperfusion, liver, kidney and lung tissues were harvested for biochemical and histopathological analyses. Results: In the histopathological examination, vascular and glomerular vacuolization, tubular dilation, hyaline casts, and tubular cell shedding in renal tissue were significantly lower in the I/RB group compared to other groups. Lung tissue showed reduced interstitial edema, alveolar congestion, and total damage scores in the I/RB group. Similarly, in liver tissue, sinusoidal dilation, necrotic cells, and mononuclear cell infiltration were significantly lower in the I/RB group. Additionally, the evaluation of TAS, TOS, OSI, and PON-1 revealed a statistically significant increase in antioxidant activity in the liver, lung, and kidney tissues of the I/RB group. Conclusions: The findings of this study demonstrate that BPC-157 exerts a significant protective effect against distant organ damage in the liver, kidneys, and lungs following lower extremity ischemia–reperfusion injury in rats.
  • Book Part
    A Niche-Based Perspective to Stem and Cancer Stem Cells of the Lung
    (Springer, 2025) Boyacıoğlu, Özge; Kalali, Berfin Deniz; Tongün, Ege; Korkusuz, Petek
    Lungs carry the principle function for the conduction and exchange of air through the primary, secondary, tertiary bronchi, bronchioles, and alveoli, resulting in the exchange of oxygen to carbon dioxide within the human tissues. Lung stem and progenitor cells enable differentiation of parenchymal and stromal elements and provide homeostasis and regeneration in the microenvironment against pulmonary diseases. Tumor-initiating cancer cells (TICs) refer to a subpopulation named as cancer stem cells (CSCs) of lung cancer exhibiting high self-renewal and proliferation capacity by Notch, Hippo, Hedgehog, and Wnt signaling pathways that leads to tumor development or recurrence. Lung cancer stem cells (LCSCs) are characterized by distinct genotypic or phenotypic alterations compared to healthy lung stem cells (LSCs) that provide a potential target to treat lung cancer. Therefore, understanding the cascades responsible for the transformation of healthy to CSCs is essential to develop new targeted therapy approaches. In this chapter, we precisely highlight the latest researches on LSCs and CSCs, key signaling mechanisms within the perspective of novel targeted therapy strategies. © 2025 Elsevier B.V., All rights reserved.