Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Benchmarking Classification Models for Cell Viability on Novel Cancer Image Datasets
    (Bentham Science Publ Ltd, 2019) Ozkan, Akin; Isgor, Sultan Belgin; Sengul, Gokhan; Isgor, Yasemin Gulgun
    Background: Dye-exclusion based cell viability analysis has been broadly used in cell biology including anticancer drug discovery studies. Viability analysis refers to the whole decision making process for the distinction of dead cells from live ones. Basically, cell culture samples are dyed with a special stain called trypan blue, so that the dead cells are selectively colored to darkish. This distinction provides critical information that may be used to expose influences of the studied drug on considering cell culture including cancer. Examiner's experience and tiredness substantially affect the consistency throughout the manual observation of cell viability. The unsteady results of cell viability may end up with biased experimental results accordingly. Therefore, a machine learning based automated decision-making procedure is inevitably needed to improve consistency of the cell viability analysis. Objective: In this study, we investigate various combinations of classifiers and feature extractors (i.e. classification models) to maximize the performance of computer vision-based viability analysis. Method: The classification models are tested on novel hemocytometer image datasets which contain two types of cancer cell images, namely, caucasian promyelocytic leukemia (HL60), and chronic myelogenous leukemia (K562). Results: From the experimental results, k-Nearest Neighbor (KNN) and Random Forest (RF) by combining Local Phase Quantization (LPQ) achieve the lowest misclassification rates that are 0.031 and 0.082, respectively. Conclusion: The experimental results show that KNN and RF with LPQ can be powerful alternatives to the conventional manual cell viability analysis. Also, the collected datasets are released from the "biochem.atilim.edu.tr/datasets/ " web address publically to academic studies.
  • Article
    Citation - Scopus: 1
    Computer Vision Based Automated Cell Counting Pipeline: a Case Study for Hl60 Cancer Cell on Hemocytometer
    (Scientific Publishers of India, 2018) Özkan,A.; İşgör,S.B.; Şengül,G.; İşgör,Y.G.
    Counting of cells can give useful information about the cell density to understand the concerning cell culture condition. Usually, cell counting can be achieved manually with the help of the microscope and hemocytometer by the domain experts. The main drawback of the manual counting procedure is that the reliability highly depends on the experience and concentration of the examiners. Therefore, computer vision based automated cell counting is an essential tool to improve the accuracy. Although the commercial automated cell counting systems are available in the literature, their high cost limits their broader usage. In this study, we present a cell counting pipeline for light microscope images based on hemocytometer that can be easily adapted to the various cell types. The proposed method is robust to adverse image and cell culture conditions such as cell shape deformations, lightning conditions and brightness differences. In addition, we collect a novel human promyelocytic leukemia (HL60) cancer cell dataset to test our pipeline. The experimental results are presented in three measures: recall, precision and F-measure. The method reaches up to 98%, 92%, and 95% based on these three measures respectively by combining Support Vector Machine (SVM) and Histogram of Oriented Gradient (HOG). © 2018, Scientific Publishers of India. All rights reserved.