2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 44Citation - Scopus: 50Computationally Efficient Discrete Sizing of Steel Frames Via Guided Stochastic Search Heuristic(Pergamon-elsevier Science Ltd, 2015) Azad, S. Kazemzadeh; Hasancebi, O.Recently a design-driven heuristic approach named guided stochastic search (GSS) technique has been developed by the authors as a computationally efficient method for discrete sizing optimization of steel trusses. In this study, an extension and reformulation of the GSS technique are proposed for its application to problems from discrete sizing optimization of steel frames. In the GSS, the well-known principle of virtual work as well as the information attained in the structural analysis and design stages are used together to guide the optimization process. A design wise strategy is employed in the technique where resizing of members is performed with respect to their role in satisfying strength and displacement constraints. The performance of the GSS is investigated through optimum design of four steel frame structures according to AISC-LRFD specifications. The numerical results obtained demonstrate that the GSS can be employed as a computationally efficient design optimization tool for practical sizing optimization of steel frames. (C) 2015 Elsevier Ltd. All rights reserved.Article Citation - WoS: 23Citation - Scopus: 21Design Optimization of Real-Size Steel Frames Using Monitored Convergence Curve(Springer, 2021) Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Azad, Saeıd Kazemzadeh; Department of Civil Engineering; Department of Civil EngineeringIt is an undeniable fact that there are main challenges in the use of metaheuristics for optimal design of real-size steel frames in practice. In general, steel frame optimization problems usually require an inordinate amount of processing time where the main portion of computational effort is devoted to myriad structural response computations during the optimization iterations. Moreover, the inherent complexity of steel frame optimization problems may result in poor performance of even contemporary or advanced metaheuristics. Beside the challenging nature of such problems, significant difference in geometrical properties of two adjacent steel sections in a list of available profiles can also mislead the optimization algorithm and may result in trapping the algorithm in a poor local optimum. Consequently, akin to other challenging engineering optimization instances, significant fluctuations could be observed in the final results of steel frame optimization problems over multiple runs even using contemporary metaheuristics. Accordingly, the main focus of this study is to improve the solution quality as well as the stability of results in metaheuristic optimization of real-size steel frames using a recently developed framework so-called monitored convergence curve (MCC). Two enhanced variants of the well-known big bang-big crunch algorithm are adopted as typical contemporary metaheuristic algorithms to evaluate the usefulness of the MCC framework in steel frame optimization problems. The numerical experiments using challenging test examples of real-size steel frames confirm the efficiency of the MCC integrated metaheuristics versus their standard counterparts.

