Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Design of the Zns/Ge pn Interfaces as Plasmonic, Photovoltaic and Microwave Band Stop Filters
    (Elsevier Science Bv, 2017) Alharbi, S. R.; Qasrawi, A. F.
    In the current work, we report and discuss the features of the design of a ZnS (300 nm)/Ge (300 nm)/GaSe (300 nm) thin film device. The device is characterized by the X-ray diffraction, electron microscopy, energy dispersive X-ray spectroscopy (EDS), optical spectroscopy, microwave power spectroscopy and light power dependent photoconductivity. While the X-ray diffraction technique revealed a polycrystalline ZnS coated with two amorphous layers of Ge and GaSe, the hot probe tests revealed the formation of pn interface. The optical spectra which were employed to reveal the conduction and valence band offsets at the ZnS/Ge and Ge/GaSe interface indicated information about the dielectric dispersion at the interface. The dielectric spectra of the ZnS/Ge/GaSe heterojunction which was modeled assuming the domination of surface plasmon interactions through the films revealed a pronounced increase in the drift mobility of free carriers in the three layers compared to the single and double layers. In the scope of the fitting parameters, a wave trap that exhibit filtering properties at notch frequency of 2.30 GHz was designed and tested. The ac signals power spectrum absorption reached similar to 99%. In addition, the photocurrent analysis on the ZnS/Ge/GaSe interface has shown it is suitability for photovoltaic and photosensing applications. (C) 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
  • Review
    Citation - WoS: 65
    Citation - Scopus: 73
    Micro Tool Design and Fabrication: a Review
    (Elsevier Sci Ltd, 2018) Oliaei, S. N. B.; Karpat, Y.; Paulo Davim, J.; Perveen, A.
    Mechanical micromachining is considered as a cost-effective and efficient fabrication technique to produce three dimensional features and free-form surfaces from various engineering materials. Micro cutting tools are an essential part of mechanical micromachining and they are exposed to harsh conditions which reduces tool life and adversely affect the economics of the process. The challenge is therefore to maintain the tool rigidity and cutting edge sharpness for extended period of time. Thus, the design, fabrication and durability of micro cutting tools are of significant importance for successful micromachining operations. This review paper aims to provide a comprehensive understanding about the capabilities, characteristics, and limitations of different fabrication techniques used in the manufacturing of micro cutting tools. State-of-the-art micro cutting tool design and coating technology has been presented for various micromachining applications. Possible future research direction and development in the field of micro tool design and fabrication has also been discussed.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Post Annealing Effects on the Structural, Compositional, Optical and Dielectric Properties of Cd Doped Gase Thin Films
    (Elsevier Science Sa, 2015) Al Garni, S. E.; Qasrawi, A. F.
    In this work, the heat treatment effects at temperatures (T-a) of 200, 300 and 400 degrees C on the compositional, structural, optical and dielectric properties of Cd doped GaSe are explored by means of energy dispersive X-ray spectroscopy, X-ray diffraction and UV-VIS spectrophotometry. The annealing process of the Cd doped GaSe thin films revealed a highly oriented orthorhombic structure type that exhibit a systematic increase in the grain size. While the strain, degree of orientation and dislocation density of the annealed films are weakly affected by the annealing process. The optical energy band gap of the doped films decreased from 1.23 to 0.90 eV and the exponential energy band tails rose from 0.16 to 0.23 eV when the annealing temperature is raised from 300 to 400 degrees C. In addition, the analysis of the dielectric spectral curves which were studied in the frequency range of 270-1500 THz, allowed to investigate the oscillator and dispersion energies and the static (epsilon(s)) and lattice (epsilon(l)) dielectric constants. The annealing process on the doped samples decreased the dispersion and oscillator energies as well as es. Oppositely, el values increased from 12.52 to 24.45 as a result of larger grain size and less defect density associated with annealing process when T-a is raised from 200 to 400 degrees C, respectively. (C) 2015 Elsevier B.V. All rights reserved.