2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 31Citation - Scopus: 50Neural Network and Classification Approach in Identifying Customer Behavior in the Banking Sector: a Case Study of an International Bank(Wiley, 2015) Ogwueleka, Francisca Nonyelum; Misra, Sanjay; Colomo-Palacios, Ricardo; Fernandez, LuisThe customer relationship focus for banks is in development of main competencies and strategies of building strong profitable customer relationships through considering and managing the customer impression, influence on the culture of the bank, satisfactory treatment, and assessment of valued relationship building. Artificial neural networks (ANNs) are used after data segmentation and classification, where the designed model register records into two class sets, that is, the training and testing sets. ANN predicts new customer behavior from previously observed customer behavior after executing the process of learning from existing data. This article proposes an ANN model, which is developed using a six-step procedure. The back-propagation algorithm is used to train the ANN by adjusting its weights to minimize the difference between the current ANN output and the desired output. An evaluation process is conducted to determine whether the ANN has learned how to perform. The training process is halted periodically, and its performance is tested until an acceptable result is obtained. The principles underlying detection software are grounded in classical statistical decision theory.Article Citation - WoS: 9Citation - Scopus: 8New Computational Methods for Classification Problems in the Existence of Outliers Based on Conic Quadratic Optimization(Taylor & Francis inc, 2020) Yerlikaya-Ozkurt, Fatma; Taylan, PakizeMost of the statistical research involves classification which is a procedure utilized to establish prediction models to set apart and classify new observations in the dataset from every fields of science, technology, and economics. However, these models may give misclassification results when dataset contains outliers (extreme data points). Therefore, we dealt with outliers in classification problem: firstly, by combining robustness of mean-shift outlier model and then stability of Tikhonov regularization based on continuous optimization method called Conic Quadratic Programming. These new methodologies are performed on classification dataset within the existence of outliers, and the results are compared with parametric model by using well-known performance measures.

