Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 47
    Citation - Scopus: 45
    Enhanced Hybrid Metaheuristic Algorithms for Optimal Sizing of Steel Truss Structures With Numerous Discrete Variables
    (Springer, 2017) Azad, Saeid Kazemzadeh
    The advent of modern computing technologies paved the way for development of numerous efficient structural design optimization tools in the recent decades. In the present study sizing optimization problem of steel truss structures having numerous discrete variables is tackled using combined forms of recently proposed metaheuristic techniques. Three guided, and three guided hybrid metaheuristic algorithms are developed by integrating a design oriented strategy to the stochastic search properties of three recently proposed metaheuristic optimization techniques, namely adaptive dimensional search, modified big bang-big crunch, and exponential big bang-big crunch algorithms. The performances of the proposed guided, and guided hybrid metaheuristic algorithms are compared to those of standard variants through optimum design of real-size steel truss structures with up to 728 design variables according to AISC-LRFD specification. The numerical results reveal that the hybrid form of adaptive dimensional search and exponential big bang-big crunch algorithm is the most promising algorithm amongst the other investigated techniques.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 13
    Automated Selection of Optimal Material for Pressurized Multi-Layer Composite Tubes Based on an Evolutionary Approach
    (Springer London Ltd, 2018) Azad, Saeid Kazemzadeh; Akis, Tolga
    Decision making on the configuration of material layers as well as thickness of each layer in composite assemblies has long been recognized as an optimization problem. Today, on the one hand, abundance of industrial alloys with different material properties and costs facilitates fabrication of more economical or light weight assemblies. On the other hand, in the design stage, availability of different alternative materials apparently increases the complexity of the design optimization problem and arises the need for efficient optimization techniques. In the present study, the well-known big bang-big crunch optimization algorithm is reformulated for optimum design of internally pressurized tightly fitted multi-layer composite tubes with axially constrained ends. An automated material selection and thickness optimization approach is employed for both weight and cost minimization of one-, two-, and three-layer tubes, and the obtained results are compared. The numerical results indicate the efficiency of the proposed approach in practical optimum design of multi-layer composite tubes under internal pressure and quantify the optimality of different composite assemblies compared to one-layer tubes.
  • Article
    Citation - WoS: 33
    Citation - Scopus: 36
    Monitored Convergence Curve: a New Framework for Metaheuristic Structural Optimization Algorithms
    (Springer, 2019) Azad, Saeid Kazemzadeh
    Metaheuristic optimization algorithms, by nature, depend on random processes, and therefore, performing numerous algorithm runs is inevitable to locate a reasonably good solution. Although executing the algorithms for small-size or trivial structural optimization problems could be computationally affordable, when dealing with challenging optimization problems, there is almost no chance of performing numerous independent runs of metaheuristics in a timely manner. This difficulty is basically due to the limitations in computational technologies as well as the excessive computational cost of such problems. In such cases that the number of independent runs is limited to a small number, each optimization run becomes highly valuable and, therefore, the stability of results becomes much more significant. In the present study, it is attempted to monitor the convergence curve of each succeeding run of the algorithm with respect to the information obtained in the previous runs. An easy-to-implement yet efficient framework is proposed for metaheuristic structural optimization algorithms where every succeeding run is monitored at certain intervals named as solution monitoring period. The solution monitoring period is selected such that, at each run, on the one hand, the algorithm could explore the search space to improve the solution quality, and on the other hand, the algorithm is occasionally forced to return to the previously visited more promising solutions if it is not able to improve the solution after a certain number of iterations. The numerical experiments using challenging test instances with up to 354 design variables indicate that, in general, the proposed approach helps to improve the solution quality as well as the robustness or stability of results in metaheuristic structural optimization.