Search Results

Now showing 1 - 2 of 2
  • Master Thesis
    Bazı Modülasyon Türlerinin Sınıflandırılmasında Yüksek Mertebeden İstatistiksel Özelliklerin Performans Analizi
    (2020) Tezel, Remziye Büşra; Kara, Ali
    Modülasyon Sınıflandırma algoritmaları, alıcıda elde edilen sinyalin modülasyon tipini belirlemek ve uygun demodulator seçimi için kullanılır. Özellik tabanlı ve Olabilirlik tabanlı olmak üzere 2 tür vardır. Bu tezde yapı olarak daha az karmaşık olan FB yöntemi kullanılmıştır. 12 Analog ve Dijital Modülasyon tipli sinyalleri sınıflandırmak için algoritma geliştirilmiştir. İstatistiksel özellikler, Yüksek Dereceli Momentler ve Yüksek Dereceli Kümülantlar kullanılmıştır. Havadan kaydedilen ve sentetik simüle kanal etkileri eklenen sinyaller Lineer, Kuadratik ve Kübik Destek Vektör Makinesi (DVM) ile sınıflandırıldı. SNR'de 0 dB ile 20 dB arasında incelenen sinyallerin sınıflandırma performansı sunulmuştur. Performansın 10 dB ve 20 dB arasında kararlı olduğu ve yaklaşık %73, en yüksek performansın ise Karesel SVM'de 12dB'de % 75.5 olduğu gözlenmiştir. Bu tezde, geliştirilen algoritmasının sınırları, 12 modülasyon tipinin özellikleri ve SVM yapısı ile başarılı bir şekilde sunulmuştur.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines
    (Springer, 2024) Yalcinkaya, Bengisu; Coruk, Remziye Busra; Kara, Ali; Tora, Hakan
    Automatic modulation classification (AMC) algorithms are crucial for various military and commercial applications. There have been numerous AMC algorithms reported in the literature, most of which focus on synthetic signals with a limited number of modulation types having distinctive constellations. The efficient classification of high-order modulation schemes under real propagation effects using models with low complexity still remains difficult. In this paper, employing quadratic SVM, a feature-based hierarchical classification method is proposed to accurately classify especially higher-order modulation schemes and its performance is investigated using over the air (OTA) collected data. Statistical features, higher-order moments, and higher-order cumulants are utilized as features. Then, the performances of some well-known classifiers are evaluated, and the classifier presenting the best performance is employed in the proposed hierarchical classification model. An OTA dataset containing 17 analog and digital modulation schemes is used to assess the performance of the proposed classification model. With the proposed hierarchical classification algorithm, a significant improvement has been achieved, especially in higher-order modulation schemes. The overall accuracy with the proposed hierarchical structure is 96% after 5 dB signal-to-noise ratio value, approximately a 10% increase is achieved compared to the traditional classification algorithm.