Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    How Do Implant Threads and Diameters Affect the All-On Success? a 3d Finite Element Analysis Study
    (IOS Press BV, 2022) Zor,Z.F.; Klllnç,Y.; Erkmen,E.; Kurt,A.
    BACKGROUND: The effect of different thread designs and diameters on the all-on-four concept is unclear. OBJECTIVE: The aim of the study was to clarify the differences in stress distribution of dental implants with various thread designs and diameters based on the all-on-four concept with three dimensional (3D) finite element analysis (FEA). METHODS: A 3D model of a totally edentulous mandible was used to perform the FEA. Four different models (M1, M2, M3, and M4) including 3.5 and 4.3 mm diameter dental implants with active and passive threaded designs were generated. The dental implants were positioned according to the all-on-four concept. The Von Mises stresses on dental implants and maximum and minimum principal stresses (Pmax and Pmin) on bony structures were calculated under vertical, oblique and horizontal loads. RESULTS: For Von Mises stresses, the highest stress values were detected on the distal implants for all models. Distal implants had also the highest stress values for vertical loading. The Von Mises stresses were found to be concentrated around the implant's neck. In all models the highest Pmax and Pmin stresses occurred in the bone surrounding the distal implant. It was noted that the active threaded implants showed the highest Pmax and Pmin stress values. CONCLUSION: The implant thread design and diameter might have a strong influence on the stress values in the all-on-four concept. © 2022 - IOS Press. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Evaluation of Biomechanical Effects of Different Implant Thread Designs and Diameters on All-On Concept
    (Ariesdue Srl, 2021) Zor, Z. F.; Kilinc, Y.; Erkmen, E.; Kurt, A.
    Aim All-on-four concept involves the use of four anterior dental implants in the edentulous jaw to overcome anatomic limitations of residual alveolar bone. The impact of implant thread design and diameter on the biomechanical performance of all-on-four concept is not yet fully understood. The purpose of this study was to investigate the biomechanical behavior of all-on-four concept with different combinations of thread designs and diameters through a three dimensional Finite Element Analysis. Materials and methods Six three-dimensional finite element models of edentulous mandible were developed. The models included the combinations of 3.5 and 4.3 mm diameter implants with active and passive thread designs. Vertical, oblique and horizontal loads were applied anterior to the end of the cantilever. Von Mises, maximum principal and minimum principal stresses were analysed. Results The results indicated a tendency towards stress reduction in Von Mises stress values of dental implants with the increase in diameter for both mesial and distal implants. In narrow implants active thread design resulted in lower Von Mises stress values than passive thread design. Active thread design demonstrated higher bone stress when compared to passive thread design. The analysis also revealed the importance of mesial implant for diminishing stresses on the distal implant and their surrounding bone under horizontal and oblique loading. Conclusion The comparison of the models suggest that use of wide implant is advantageous in the all-on-four concept. There is a biomechanical advantage in using narrow implants with active thread design in horizontally inadequate bone. The thread design was more significant in terms of increasing bone stress than implant diameter. The mesial implant influences the biomechanical behavior of the whole design, contributing to a more favorable stress distribution under horizontal and oblique loading conditions.