2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 17Citation - Scopus: 18Daily Pm10, Periodicity and Harmonic Regression Model: the Case of London(Pergamon-elsevier Science Ltd, 2020) Okkaoglu, Yasin; Akdi, Yilmaz; Unlu, Kamil DemirberkOne of the most important and distinguishable features of the climate driven data can be shown as the seasonality. Due to its nature air pollution data may have hourly, daily, weekly, monthly or even seasonal cycles. Many techniques such as non-linear time series analysis, machine learning algorithms and deterministic models, have been used to deal with this non-linear structure. Although, these models can capture the seasonality they can't identify the periodicity. Periodicity is beyond the seasonality, it is the hidden pattern of the time series. In this study, it is aimed to investigate the periodicity of daily Particulate Matter (PM10) of London between the periods 2014 and 2018. PM10 is the particulate matter of which aerodynamic diameter is less than 10 mu m. Firstly, periodogram based unit root test is used to check the stationarity of the investigated data. Afterwards, hidden periodic structure of the data is revealed. It is found that, it has five different cycle periods as 7 days, 25 days, 6 months, a year and 15 months. Lastly, it is shown that harmonic regression performs better in forecasting monthly and daily averages of the data.Article Citation - WoS: 16Citation - Scopus: 18Modeling and Forecasting of Monthly Pm2.5 Emission of Paris by Periodogram-Based Time Series Methodology(Springer, 2021) Akdi, Yilmaz; Golveren, Elif; Unlu, Kamil Demirberk; Yucel, Mustafa ErayIn this study, monthly particulate matter (PM2.5) of Paris for the period between January 2000 and December 2019 is investigated by utilizing a periodogram-based time series methodology. The main contribution of the study is modeling the PM2.5 of Paris by extracting the information purely from the examined time series data, where proposed model implicitly captures the effects of other factors, as all their periodic and seasonal effects reside in the air pollution data. Periodicity can be defined as the patterns embedded in the data other than seasonality, and it is crucial to understand the underlying periodic dynamics of air pollutants to better fight pollution. The method we use successfully captures and accounts for the periodicities, which could otherwise be mixed with seasonality under an alternative methodology. Upon the unit root test based on periodograms, it is revealed that the investigated data has periodicities of 1 year and 20 years, so harmonic regression is utilized as an alternative to Box-Jenkins methodology. As the harmonic regression displayed a better performance both in and out-of-sample forecasts, it can be considered as a powerful alternative to model and forecast time series with a periodic structure.

