Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - Scopus: 1
    A Critical Review on Multifunctional Building Envelope Materials for Simultaneous Mitigation of Urban Heat and Noise Islands
    (Springer int Publ Ag, 2025) Sarul, Meltem; Kocyigit, Filiz Bal; Yilmaz, Cagri
    Rethinking urban models requires resilient designs providing solutions to environmental problems at the building scale. Urban Heat Islands (UHI) and Urban Noise Islands (UNI) often coexist and significantly affect human health and comfort. This article aims to examine dual-function building envelope materials for reducing urban heat and noise islands using the literature review method. Dual-functional building envelope materials provide versatile benefits such as increasing energy efficiency, mitigating environmental challenges in densely populated areas, and improving individual and social health and comfort, in addition to their thermal and acoustic benefits. The use of these materials in building envelopes supports the climate adaptation of cities and provides resource efficiency.High albedo cool materials used for excessive heat reduction can be in the form of cool roofs or cool walls. High reflective materials, cool colored materials, retro-reflective materials, photoluminescent materials, thermochromic materials and sustainable materials are the most common among the cool material alternatives. The use of natural and local white colored gravel of various sizes on cool roofs is a low-cost and efficient approach to UHI reduction. Cool colored materials reflecting the near-infrared part of the solar spectrum bring a suitable solution for historical buildings where white color application is not appropriate. Highly reflective materials combat heat-related risks by reflecting incoming solar radiation directly back to their source due to their special content. Photoluminescent materials, which are still in the research phase, and thermochromic materials that change color when they reach a predetermined temperature are other solutions used to prevent heat-induced problems. Recycled or paraffin, biowaste oil added Phase Change Materials (PCM) also offer environmentally friendly, sustainable solutions for this case. In terms of UNI mitigating techniques, sound absorbing materials with high sound absorption coefficient and low density are widely preferred for building envelopes. Since high albedo materials generally have low sound absorption capacity, although reduction in heat- and noise-related threats is possible separately with the building envelope materials to be selected, multifunctional surface design diminishing both UHI and UNI effects simultaneously still involves various challenges. However, there are various strategies including applications of green walls and green roofs. Innovative approaches such as the use of PCM in pavements or the conversion of noise into green electricity using resonators or acoustic metamaterials also exist. While such solutions have not yet been widely found in practical applications, they are promising for the resilient smart cities of the future. Further experimental validation is needed to evaluate the long-term performance, cost-effectiveness and climate-specific applicability of multifunctional materials.HighlightsMulti functional building envelope materials that simultaneously address UHI and UNI offer great opportunities to create resilient future designs.Using cool materials in building envelopes mitigate UHI related risks.Using sound-absorbing materials in building envelopes mitigate UNI related risks.Innovative solutions such as phase-changing materials and converting harvested noise into electricity are great future opportunities.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Low-Cost Alpha Cabin Like Test Box Proposal for the Development of New Acoustic Sound Insulation Materials
    (Gazi Univ, 2023) Koçyiğit, Filiz Bal; Köse, Ercan; Buluklu, Hatice Mehtap
    Experimental criteria for sound insulation material recommendation and design have an important share in indoor acoustic control. Among these criteria, laboratories with devices such as impedance tubes, alpha cabins and reverberation rooms used to measure and analyze parameters such as sound transmission loss and sound absorption coefficient have been investigated. In literature, it has been observed that there are studies on acoustic materials and the tests applied to these materials, but the application is more limited. According to research data, an Alpha Cabin model system design that can be used to develop new types of acoustic sound materials has been proposed. In addition to the fact that a large number of experimental measurements can be performed at lower costs using the designed Alpha Cabin model system, many tests can be performed easily for different material designs in a very short time. To perform these tests, the Alpha Cabin system has been designed based on noise and sound insulation. For example, floating flooring, ribbed connection, and so on. Afterward, different insulation materials were used for insulation purposes and standards were achieved. The Alpha Cabin test system, which was designed and developed, overlaps the experimental and theoretical data for 500, 2000, and 4000 Hz when compared with the values of 29.1 dB for 500 Hz, 38.6 dB for 2000 Hz, and 49 dB for 4000 Hz measured in the Acoustic Facade Panel Test Room, and it has been observed that it can be used in the development of new sound insulation materials.