Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 31
    Citation - Scopus: 35
    Comparison Between Alternating Aerobic-Anoxic and Conventional Activated Sludge Systems
    (Pergamon-elsevier Science Ltd, 2007) Balku, Saziye
    Conventional activated sludge systems ensure removal of colloidal and dissolved carbonaceous organic matter whereas alternating aerobic-anoxic systems, in addition, satisfy a further reduction in nitrogen content of wastewater. Main difference between them is that the alternating system should also include an anoxic operation mode which satisfies denitrification. In other words conventional systems are operated under aerobic conditions whereas alternating systems require a periodical change from aerobic conditions to anoxic conditions. So the most important problem in alternating systems is to find the appropriate durations for both sequences. In this study a comparison between conventional and alternating systems is considered in terms of nitrogen removal and aeration time by simulation under the same conditions together with an optimization algorithm. The results show that an activated sludge system can be operated as an alternating aerobic-anoxic system so that nitrogen removal is also possible during treatment without any additional investment or operational cost. (C) 2007 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 168
    Citation - Scopus: 186
    Heavy Metal Removal Investigation in Conventional Activated Sludge Systems
    (C Ej Publishing Group, 2020) Buaisha, Magdi; Balku, Saziye; Ozalp-Yaman, Seniz
    The combination of industrial and domestic wastewater in municipal WWTPs (waste water treatment plants) may be economically profitable, but it increases the difficulty of treatment, and also has some detrimental effects on the biomass and causes a low-quality final effluent. The present study evaluates the treatment process both in the presence and absence of heavy metals using ASM3 (activated sludge model no.3) so as to improve the model by means of incorporating other novel inhibitory kinetic and settler models. The results reveal that the presence of heavy metal, a case study for copper and cadmium at a concentration of 0.7 mgL(-1) in a biological treatment system has a negative effect on heterotrophic bacteria concentration by 25.00 %, and 8.76 % respectively. Meanwhile, there are no important changes in COD (chemical oxygen demand), SS (total suspended solids) and TN (total nitrogen) in the final effluent in the conventional system. However, all these parameters are acceptable and consistent with EU Commission Directives. The results indicate that ASM3 can predict and provide an opportunity of the operation for an activated sludge wastewater treatment plant that receives the effluent from an industrial plant.