Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 15
    Citation - Scopus: 18
    Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
    (Natl Acad Sci Ukraine, inst Math, 2009) Guseinov, Gusein Sh.
    In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing numbers of the matrix. The inverse problems from generalized spectral function as well as from spectral data are investigated. In this way, a procedure for construction of complex tridiagonal matrices having real eigenvalues is obtained.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On the Determination of a Complex Finite Jacobi Matrix From Spectral Data
    (Univ Politehnica Bucharest, Sci Bull, 2015) Guseinov, Gusein Sh; Mathematics
    In this paper, we study the necessary and sufficient conditions for solvability of an inverse spectral problem for finite order complex Jacobi matrices (tri-diagonal symmetric matrices with complex entries). The problem is to reconstruct the complex Jacobi matrix from the spectral data consisting of eigenvalues and normalizing numbers of this matrix. An explicit procedure of reconstruction of the matrix from the spectral data is given.