Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Structural and Dielectric Performance of the Ba(zn1/3< Perovskite Ceramics
    (Iop Publishing Ltd, 2019) Qasrawi, A. F.; Sahin, Ethem Ilhan; Emek, Mehriban; Kartal, Mesut; Kargin, Serdar
    In this work, we have explored the antimony doping effects on the structural and dielectric properties of Ba(Zn1/3Nb2/3)O-3 ceramics (BZN). The ceramics displayed perovskite structures with a lattice constant that decreases with increasing Sb content. The antimony solubility limit of the BZN ceramics is x < 0.50. Belowthis limit and in the range of 0.30 <= x <= 0.40, the microstrain, the dislocation density and the stacking faults decreased and the crystallite size increases with increasing Sb content in the composition of BZN. When the limit is exceeded minor phases are predicted by software analysis and confirmed by the experimental techniques. The presence of these phases is also verified by the scanning electron microscopy and energy dispersive x-ray spectroscopy techniques. Increasing the Sb content is observed to decrease the value of the dielectric constant. The Sb doped BZN ceramics exhibits high dielectric quality factors that nominate it for applications in electronics as radio waves resonators.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 9
    Structural and Optoelectronic Properties of Moo3 Interfaces
    (Wiley-v C H verlag Gmbh, 2019) Alharbi, Seham Reef; Qasrawi, Atef Fayez
    In this article, the authors discuss the growth nature, the structural, optical and dielectric properties of CuSe thin films deposited onto MoO3 substrate. The films are studied by the X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and ultraviolet-visible light spectroscopy techniques. CuSe thin films are observed to exhibit strained nature of growth when grown onto MoO3 amorphous substrates. Optically, the MoO3/CuSe films are found to exhibit conduction (Delta Ec) and valence (Delta Ev) band offsets of values of 3.70 and 3.42 eV, respectively. In addition, a remarkable increase in the absorbability (R lambda) of MoO3 by 72 times at 3.0 eV is obtained as a result of coating it with CuSe. The Delta Ec, Delta Ev, and R lambda values are significantly high and nominate the MoO3/CuSe interfaces for use in many optoelectronic applications. In addition, the dielectric analysis shows that the MoO3/CuSe heterojunction exhibit optical conductivity parameters that make it suitable for use in optical communications. Particularly, the Drude-Lorentz modeling of the imaginary part of the dielectric constant for the MoO3/CuSe interfaces displays mobility and plasmon frequency values of 7.76 cm(2) V-1 s(-1) and 3.78 GHz, respectively. The obtained plasmon frequency values indicate the applicability of this device in microwave technology.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Characterization of As2se3< Heterojunction Designed for Multifunctional Operations
    (Iop Publishing Ltd, 2021) Qasrawi, A. F.; Kayed, T. S.
    In this article, As2Se3/MoO3 heterojunction devices are structurally, compositionally, optically and electrically characterized. The heterojunction devices which are prepared by the thermal evaporation technique under vacuum pressure of 10(-5) mbar are observed to exhibit amorphous nature of growth. The optical spectrophotometry measurements and analyses on the heterojunction devices revealed a conduction and valence band offsets of values of 2.64 and 4.08 eV, respectively. In addition, the dielectric dispersion and the optical conductivity parametric analyses have shown that the heterojunction could exhibit large drift mobility value up to 73.7 cm(2) V-1 s(-1). From electrical point of view, while the capacitance- voltage curves reveal characteristics of MOSFET devices, the current--voltage curves display tunneling diode characteristics. The features of the As2Se3/MoO3 devices including the band offsets, drift mobility, plasmon frequency, microwave band filtering and MOSFET characteristics make them attractive for use as thin films transistors suitable electrical and optical applications.