2 results
Search Results
Now showing 1 - 2 of 2
Conference Object Citation - WoS: 16Modified Cognitive Complexity Measure(Springer-verlag Berlin, 2006) Misra, SanjayIn cognitive functional size measure, the functional size is proportional to weighted cognitive complexity of all internal BCS's and number of input and output. This paper proposes the modification in cognitive functional size complexity measure. The proposed complexity measure is proportional to total occurrence of operators and operands and all internal BCS's. The operators and operands are equally important in design consideration. Thus, the contribution of the operators, operands and cognitive aspects complete the definition of a complexity measure in terms of cognitive. Accordingly, a new formula is developed for calculating the modified cognitive complexity measure. An attempt has also been made to evaluate modified cognitive complexity measure in terms of nine Weyuker's properties, through examples. It has been found that seven of nine Weyuker's properties have been satisfied by the modified cognitive complexity measure and hence establishes as a well-structured one.Article Citation - WoS: 13ASSESSING COGNITIVE COMPLEXITY IN JAVA-BASED OBJECT-ORIENTED SYSTEMS: METRICS AND TOOL SUPPORT(Slovak Acad Sciences inst informatics, 2016) Crasso, Marco; Mateos, Cristian; Zunino, Alejandro; Misra, Sanjay; Polvorin, PabloSoftware cognitive complexity refers to how demanding the mental process of performing tasks such as coding, testing, debugging, or modifying source code is. Achieving low levels of cognitive complexity is crucial for ensuring high levels of software maintainability, which is one of the most rewardful software quality attributes. Therefore, in order to control and ensure software maintainability, it is first necessary to accurately quantify software cognitive complexity. In this line, this paper presents a software metric to assess cognitive complexity in Object Oriented (OO) systems, and particularly those developed in the Java language, which is very popular among OO programming languages. The proposed metric is based on a characterization of basic control structures present in Java systems. Several algorithms to compute the metric and their materialization in the Eclipse IDE are also introduced. Finally, a theoretical validation of the metric against a framework specially designed to validate software complexity metrics is presented, and the applicability of the tool is shown by illustrating the metric in the context of ten real world Java projects and relevant metrics from the well-known Chidamber-Kemerer metric suite.

