2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 11Citation - Scopus: 15The q-versions of the Bernstein Operator: From Mere Analogies To Further Developments(Springer Basel Ag, 2016) Ostrovska, SofiyaThe article exhibits a review of results on two popular q-versions of the Bernstein polynomials, namely, the LupaAY q-analogue and the q-Bernstein polynomials. Their similarities and distinctions are discussed.Article Citation - WoS: 15Citation - Scopus: 18The Sharpness of Convergence Results for q-bernstein Polynomials in The Case q > 1(Springer Heidelberg, 2008) Ostrovska, SofiyaDue to the fact that in the case q > 1 the q-Bernstein polynomials are no longer positive linear operators on C[0, 1], the study of their convergence properties turns out to be essentially more difficult than that for q 1. In this paper, new saturation theorems related to the convergence of q-Bernstein polynomials in the case q > 1 are proved.

