3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 3EFFECT OF Y, Au AND YAu NANOSANDWICHING ON THE STRUCTURAL, OPTICAL AND DIELECTRIC PROPERTIES OF ZnSe THIN FILMS(Natl inst R&d Materials Physics, 2019) Qasrawi, A. F.; Taleb, M. F.In this article, we report the effects of insertion of yttrium, gold and yttrium-gold (YAu) metallic nano-slabs on the structural, optical and dielectric properties of ZnSe thin films. The ZnSe thin films which are prepared by the thermal evaporation technique under vacuum pressure of 10-5 mbar exhibit hexagonal structure. While the insertion of the 70 nm thick Y layers does not alter the lattice parameters and stress values, the Au and YAu layers increased the lattice parameters along the a- and c-axes and decreased the stress values. In addition, the insertion of these metallic layers slightly alters the value of the energy band gap and increases the width of the interbands. The light absorbability are increased by 1.4, 2.0 and 2.4 times upon insertion of Y, Au and YAu, slabs, respectively. On the other hand, the dielectric and optical conductivity analyses has shown that the use of the YAu stacked metal layers increases the real part of the dielectric constant, the optical conductivity, the drift mobility and extended the plasmon frequency range from 35.1 to 254.0 (Omega cm)(-1), from 1098 to 1766 cm(2)/vs and from 0.94-3.11 GHz to 2.13-4.83 GHz, respectively. The insertion of the two stacked metallic layers between two layers of ZnSe makes the ZnSe more appropriated for thin film transistor technology.Article Citation - WoS: 8Citation - Scopus: 8Thermoluminescence Properties of Zno Nanoparticles in the Temperature Range 10-300 K(Springer, 2016) Isik, M.; Yildirim, T.; Gasanly, N. M.Low-temperature thermoluminescence (TL) properties of ZnO nanoparticles grown by sol-gel method were investigated in the 10-300 K temperature range. TL glow curve obtained at 0.2 K/s constant heating rate exhibited one broad peak around 83 K. The observed peak was analyzed using curve fitting method to determine the activation energies of trapping center(s) responsible for glow curve. Analyses resulted in the presence of three peaks at 55, 85 and 118 K temperatures with activation energies of 12, 30 and 45 meV, respectively. Thermal cleaning process was applied to separate overlapped peaks and get an opportunity to increase the reliability of results obtained from curve fitting method. Heating rate dependence of glow curve was also studied for rates between 0.2 and 0.7 K/s. The shift of the peak maximum temperatures to higher values and decrease in peak height with heating rate were observed. Moreover, X-ray diffraction and scanning electron microscopy were used for structural characterization.Article Citation - Scopus: 3Effect of Y, Au and Yau Nanosandwiching on the Structural, Optical and Dielectric Properties of Znse Thin Films(S.C. Virtual Company of Phisics S.R.L, 2019) Qasrawi,A.F.; Taleb,M.F.In this article, we report the effects of insertion of yttrium, gold and yttrium-gold (YAu) metallic nano-slabs on the structural, optical and dielectric properties of ZnSe thin films. The ZnSe thin films which are prepared by the thermal evaporation technique under vacuum pressure of 10-5 mbar exhibit hexagonal structure. While the insertion of the 70 nm thick Y layers does not alter the lattice parameters and stress values, the Au and YAu layers increased the lattice parameters along the a- and c-axes and decreased the stress values. In addition, the insertion of these metallic layers slightly alters the value of the energy band gap and increases the width of the interbands. The light absorbability are increased by 1.4, 2.0 and 2.4 times upon insertion of Y, Au and YAu, slabs, respectively. On the other hand, the dielectric and optical conductivity analyses has shown that the use of the YAu stacked metal layers increases the real part of the dielectric constant, the optical conductivity, the drift mobility and extended the plasmon frequency range from 35.1 to 254.0 (Ωcm)−1, from 1098 to 1766 cm2/Vs and from 0.94-3.11 GHz to 2.13-4.83 GHz, respectively. The insertion of the two stacked metallic layers between two layers of ZnSe makes the ZnSe more appropriated for thin film transistor technology. © 2019, S.C. Virtual Company of Phisics S.R.L. All right reserved.

