Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 2
    Synthesis of n-polyethereal Polypyrroles and Their Application for the Preconcentration of Rare Earth Ions
    (John Wiley & Sons inc, 2008) Koksel, Bahar; Cihaner, Atilla; Kaya, Murat; Volkan, Muervet; Onal, Ahmet M.
    Conducting polymers containing polyether pseudocages (PI, PII, PIII) have been synthesized via chemical oxidation of 1,5-bis(1,1-pyrrole)-3-oxabutane (MI), 1,8-bis(I,I-pyrrole)-3,6-dioxahexane (MII), and 1,11-bis(1,1-pyrrole)-3,6,9-trioxaundecane (MIII) using anhydrous FeCl3 in CHCl3. Because as obtained polymer resins did not give any response toward any cations, they were reduced (undoped) using chemical reducing agents. Tetrabutylammonium hydroxide was found to be more effective in undoping to obtain more reproducible and reusable polymer resins. The undoped polymer resins were tried in the extraction of rare earth metal ions from the aqueous medium. Among them, only PIII resin removes La(III), Eu(III) and Yb(III) and can be employed for the preconcentration of these metal ions. For batch extraction of La(III), Eu(III) and Yb(III) at neutral pH values, percent recoveries of 98.0 +/- 1.0, 90.7 +/- 1.4, 87.3 +/- 4.0, respectively, has been obtained. The sorption capacity is found as 1.3 mg of La(III) per gram of PIII resin. The PIII resin could be reused at least five times without significant change in its sorption capacity. (c) 2008 Wiley Periodicals, Inc.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 14
    Electrochemical Synthesis of New Conducting Copolymers Containing Pseudo-Polyether Cages With Pyrrole
    (Elsevier Science Sa, 2007) Cihaner, Atilla
    Conducting copolymers have been synthesized via electrochemical oxidation of pyrrole (Py) in the presence of monomer 1, 11 -bis(1,1-pyrrole)-3,6,9-trioxaundecane (I) in an electrolytic solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF(6)) dissolved in acetonitrile. It is observed that reversible redox behavior of poly(I-co-Py)s shifts to more positive potentials with the increasing amount of I in the comonomer mixture, indicating formation of a copolymer. It is also found that increasing the ratio of I in the comonomer mixture decreases the conductivity of the obtained polymer films. The dark electrical conductivity measurements in the temperature range of 300-100 K revealed the extrinsic type of conduction with activation energy values being in the range of 82.3-16.9 meV. (c) 2007 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Impedance Spectroscopy of N-Substituted Oligo-Oxyethylene Polypyrrole Films
    (John Wiley & Sons inc, 2008) Cihaner, Atilla; Onal, Ahmet M.
    The electrochemical properties of neutral (dedoped) and oxidized (doped) poly(1,11-bis(1,1-pyrrole)-3,6,9-trioxaundecane) (poly-I) film electrodes were investigated using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques. Poly-I was deposited on glassy carbon electrode (GCE) from acetonitrile solution containing 5.0 x 10(-3) M 1,11-bis(1,1-pyrrole)-3,6,9-trioxaundecane (I) and 0.1 M LiClO4 supporting electrolyte. Doped poly-I exhibits a single semicircle in its complex-capacitance plots, indicating a single dominant ion transport process, together with high capacitance values. These features make this polymer film a candidate for an energy storage material. Also, poly-I can be a candidate as a sensory material for the detection of Ag+ based on impedance parameters. (C) 2008 Wiley Periodicals, Inc.
  • Article
    Citation - WoS: 65
    Citation - Scopus: 67
    An Electrochromic and Fluorescent Polymer Based on 1-(1
    (Elsevier Science Sa, 2008) Cihaner, Atilla; Algi, Fatih
    A novel polymer was synthesized by electrochemical polymerization of 1-(1-naphthyl)-2,5-di-2-thienyl-1H-pyrrole (SNS-1-NAPH). The corresponding polymer (PSNS-1-NAPH) was characterized by cyclic voltammetry, FT-IR and UV-vis spectroscopy. The polymer has a very well-defined and reversible redox process in both organic and aqueous solutions. Furthermore, it shows stable electrochromic behavior; yellow in the neutral state, green in the intermediate state and violet in the oxidized state. PSNS-1-NAPH is soluble in common solvents. Although SNS-1-NAPH is almost nonfluorescent, its polymer is a yellow and/or green light emitter. (c) 2007 Elsevier B.V. All rights reserved.