Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Citation - Scopus: 1
    Hydrogen Implantation Effects on the Electrical and Optical Properties of Inse Thin Films
    (Tubitak Scientific & Technological Research Council Turkey, 2012) Qasrawi, Atef Fayez; Ilaiwi, Khaled Faysal; Polimeni, Antonio
    The effects of hydrogen ion implantation on the structural, electrical and optical properties of amorphous InSe thin films have been investigated. X-ray diffraction analysis revealed no change in the structure of the films. An implantation of 7.3 x 10(18) ions/cm(2) decreased the electrical conductivity by three orders of magnitude at 300 K. Similarly, the conductivity activation energy, which was calculated in the temperature range of 300-420 K, decreased from 210 to 78 meV by H-ion implantation. The optical measurements showed that the direct allowed transitions energy band gap of amorphous InSe films has decreased from 1.50 to 0.97 eV by implantation. Furthermore, significant decreases in the dispersion and oscillator energy, static refractive index and static dielectric constants are also observed by hydrogen implantation.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Structural and Optical Properties of Thermally Evaporated Ga-In Thin Films
    (World Scientific Publ Co Pte Ltd, 2014) Isik, Mehmet; Gullu, Hasan Huseyin
    In this paper, structural and optical properties of Ga-In-Se (GIS) thin films deposited by thermal evaporation technique have been investigated. The effect of annealing was also studied for samples annealed at temperatures between 300 degrees C and 500 degrees C. X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy have been used for structural characterization. It was reported that increase of annealing temperature results with better crystallization and chemical composition of the films were almost same. Optical properties of the films were studied by transmission measurements in the wavelength range of 320-1100 nm. The direct bandgap transitions with energies in the range of 1.52 eV and 1.65 eV were revealed for the investigated GIS films. Photon energy dependence of absorption coefficient showed that there exist three distinct transition regions for films annealed at 400 degrees C and 500 degrees C. The quasicubic model was applied for these transitions to calculate crystal-field splitting and spin-orbit splitting energy values.