2 results
Search Results
Now showing 1 - 2 of 2
Article Enhancing Machining Efficiency and Sustainability of Ti-6Al-4V Through Minimum Quantity Lubrication With Ester-Based Oils(Taylor & Francis Ltd, 2025) Namlu, Ramazan Hakki; Kavut, Kuebra; Tom, Hanife GulenTi-6Al-4 V is known as difficult-to-cut due to its low thermal conductivity and high chemical reactivity. While cutting fluids aid lubrication and reduce friction, Conventional Cutting Fluids (CCF) have high consumption, limited efficiency gains and negative environmental and health effects. Therefore, there is an ongoing search for more sustainable alternatives to CCF that do not adversely affect machining performance. Minimum Quantity Lubrication (MQL), which delivers compressed air - oil aerosol, has emerged as a promising solution by drastically reducing fluid use and associated risks. Selecting the right MQL fluid is key to optimising machining performance. This study evaluates MQL fluids based on polyol and polymeric esters for Ti-6Al-4 V machining and compares their performance with CCF. Cutting forces, surface roughness and topography are examined. Results show that MQL reduces cutting forces up to 21.7% and surface roughness up to 57.6% compared to CCF, with more uniform surface topography. Among MQL oils, polymeric esters perform better than polyol esters, with a reduction in cutting force up to 14.6% and surface roughness up to 47.7%. High viscosity indexed polymeric esters showed the best overall performance due to their thermal stability. Moreover, according to the sustainability assessment analysis polymeric esters were identified as the most sustainable option.Review Citation - WoS: 58Citation - Scopus: 65Application of Minimum Quantity Lubrication Techniques in Machining Process of Titanium Alloy for Sustainability: a Review(Springer London Ltd, 2019) Osman, Khaled Ali; Unver, Hakki Ozgur; Seker, UlviRecently, the manufacturing sector is increasingly keen to apply sustainability at all levels of sustainability from system to products and processes. At the processes level, cutting fluids (CFs) are among the most unsustainable materials and need to be addressed properly in accordance with three main and decisive aspects, also known as the triple bottom line: ecology, society, and economics. Minimum quantity lubrication (MQL) is a promising technique that minimizes the use of CFs, thus improving sustainability. This paper presents a review of the literature available on the use of the MQL technique during different machining processes involving titanium alloys (Ti-6Al-4V). To carry out the study, four search engines were used to focus on the most cited articles published over a span of 17years from 2000 to 2016. The performance and drawbacks are compiled for each eco-friendly technique: dry, MQL, and cryogenics with combinations of MQL and cryogenics, critically considering machining parameters such as cutting speed, feed rate, and output measures, namely surface roughness, tool life, and cutting temperature. After drawing conclusions from critical evaluation of research body, future research avenues in the field are proposed for the academics and industry.

