Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    The Approximation of Logarithmic Function by q-bernstein Polynomials in the Case q > 1
    (Springer, 2007) Ostrovska, Sofiya
    Since in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[ 0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[ 0, 1] uniformly approximated by their q-Bernstein polynomials ( q > 1) remains open. It is known that the approximation occurs for functions admitting an analytic continuation into a disc {z : | z| < R}, R > 1. For functions without such an assumption, no general results on approximation are available. In this paper, it is shown that the function f ( x) = ln( x + a), a > 0, is uniformly approximated by its q-Bernstein polynomials ( q > 1) on the interval [ 0, 1] if and only if a >= 1.
  • Article
    Qualitative results on the convergence of the q-Bernstein polynomials
    (North Univ Baia Mare, 2015) Ostrovska, Sofiya; Turan, Mehmet
    Despite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    On the Image of the Limit q-bernstein Operator
    (Wiley, 2009) Ostrovska, Sofiya
    The limit q-Bernstein operator B-q emerges naturally as an analogue to the Szasz-Mirakyan operator related to the Euler distribution. Alternatively, B-q comes out as a limit for a sequence of q-Bernstein polynomials in the case 0