2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 36Agriculture 4.0: an Implementation Framework for Food Security Attainment in Nigeria's Post-Covid Era(Ieee-inst Electrical Electronics Engineers inc, 2021) Oruma, Samson O.; Misra, Sanjay; Fernandez-Sanz, LuisThe challenge of Nigeria's food insecurity in the era of the Covid-19 pandemic, insecurity, climate change, population growth, food wastage, etc., is a demanding task. This study addresses Nigeria's food insecurity challenges by adopting agriculture 4.0 and commercial farming. Using data from six digital libraries, the Nigerian Bureau of Statistics, and other internet sources, we conducted a Systematic Literature Review (SLR using PRISMA) on Nigeria's agriculture, food security, and agriculture 4.0. Our results show Nigeria's current agricultural state, threats to food security, and modern digital agriculture technologies. We adapted our SLR findings to develop an implementation framework for agriculture 4.0 in solving Nigeria's food insecurity challenge in the post-Covid-19 era. Our proposed framework integrates precision agriculture in Nigeria's food production and the necessary enabling digital technologies in the agri-food supply chain. We analyzed the critical implementation considerations during each agri-food supply chain stage of farming inputs, farming scale, farming approach, farming operation, food processing, food preservation/storage, distribution/logistics, and the final consumers. This study will help researchers, investors, and the government address food security in Nigeria. The implementation of agriculture 4.0 will substantially contribute to SDG 2 (zero hunger), SDG 3 (good health and well-being), and SDG 8 (decent work and economic growth) of #Envision 2030 of the United Nations, for the benefit of Nigeria, Africa, and the entire world.Article Citation - WoS: 3Citation - Scopus: 4Predictive Rental Values Model for Low-Income Earners in Slums: the Case of Ijora, Nigeria(Taylor & Francis Ltd, 2023) Iroham, Chukwuemeka O.; Misra, Sanjay; Emebo, Onyeka C.; Okagbue, Hilary, IIt is well known most often that values of properties tend to hike at the effluxion of time. This has necessitated the adoption of predictive models in interpreting outcomes in the property market in the future. Earlier studies have been oblivious of such models' outcomes as it affects any focal group, particularly the vulnerable. This present study focuses on the low-income earners found in the slum. The Ijora community in Lagos was the highlight of this study, particularly Ijora Badia and Ijora Oloye, regarded as slums according to the UNDP report. The entire fifty-two (52) local agents in the Ijora community were surveyed in cross-sectional survey research that entailed the questionnaire's issuance. The nexus of data collection, pre-processing, data analysis, algorithm application, and model evaluation resulted in retrieving rental values within the years 2010 and 2019 on two predominant residential property types of self-contain and one-bedroom flats found within the community. Three selected algorithms, Artificial Neural Network (ANN), Support Vector Machine, and Logistic Regression, were essentially used as classifiers but trained to predict the continuous values. These algorithms were implemented through the use of Python's SciKit-learn Library and RapidMiner. The findings revealed that though all three models gave accurate predictions, Logistic Regression was the highest with low error values. It was recommended that Logistic Regression be applied but with much data set of property values of low-income earners over much more period. This study will contribute to the Sustainable development goals(SDG) 11(Sustainable cities and communities) of the United Nations to benefit developing countries, especially in sub-Saharan Africa.

