4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 9Citation - Scopus: 9The Approximation of Logarithmic Function by q-bernstein Polynomials in the Case q > 1(Springer, 2007) Ostrovska, SofiyaSince in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[ 0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[ 0, 1] uniformly approximated by their q-Bernstein polynomials ( q > 1) remains open. It is known that the approximation occurs for functions admitting an analytic continuation into a disc {z : | z| < R}, R > 1. For functions without such an assumption, no general results on approximation are available. In this paper, it is shown that the function f ( x) = ln( x + a), a > 0, is uniformly approximated by its q-Bernstein polynomials ( q > 1) on the interval [ 0, 1] if and only if a >= 1.Article Qualitative results on the convergence of the q-Bernstein polynomials(North Univ Baia Mare, 2015) Ostrovska, Sofiya; Turan, MehmetDespite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented.Article Citation - WoS: 9Citation - Scopus: 8On the Eigenvectors of the q-bernstein Operators(Wiley, 2014) Ostrovska, S.; Turan, M.In this article, both the eigenvectors and the eigenvalues of the q-Bernstein operators have been studied. Explicit formulae are presented for the eigenvectors, whose limit behavior is determined both in the case 01. Because the classical case, where q=1, was investigated exhaustively by S. Cooper and S. Waldron back in 2000, the present article also discusses the related similarities and distinctions with the results in the classical case. Copyright (c) 2013 John Wiley & Sons, Ltd.Article Qualitative Results on the Convergence of the Q-Bernstein Polynomials(North University of Baia Mare, 2015) Ostrovska,S.; Turan,M.Despite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented. © 2015, North University of Baia Mare. All rights reserved.

