Search Results

Now showing 1 - 2 of 2
  • Review
    Citation - WoS: 57
    Citation - Scopus: 65
    Application of Minimum Quantity Lubrication Techniques in Machining Process of Titanium Alloy for Sustainability: a Review
    (Springer London Ltd, 2019) Osman, Khaled Ali; Unver, Hakki Ozgur; Seker, Ulvi
    Recently, the manufacturing sector is increasingly keen to apply sustainability at all levels of sustainability from system to products and processes. At the processes level, cutting fluids (CFs) are among the most unsustainable materials and need to be addressed properly in accordance with three main and decisive aspects, also known as the triple bottom line: ecology, society, and economics. Minimum quantity lubrication (MQL) is a promising technique that minimizes the use of CFs, thus improving sustainability. This paper presents a review of the literature available on the use of the MQL technique during different machining processes involving titanium alloys (Ti-6Al-4V). To carry out the study, four search engines were used to focus on the most cited articles published over a span of 17years from 2000 to 2016. The performance and drawbacks are compiled for each eco-friendly technique: dry, MQL, and cryogenics with combinations of MQL and cryogenics, critically considering machining parameters such as cutting speed, feed rate, and output measures, namely surface roughness, tool life, and cutting temperature. After drawing conclusions from critical evaluation of research body, future research avenues in the field are proposed for the academics and industry.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 16
    An Experimental Study on Ultrasonic-Assisted Drilling of Inconel 718 Under Different Cooling/Lubrication Conditions
    (Springer London Ltd, 2024) Erturun, Omer Faruk; Tekaut, Hasan; Cicek, Adem; Ucak, Necati; Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin
    Ultrasonic-assisted drilling (UAD) is one of the efficient and innovative methods to improve the drillability of difficult-to-cut materials. In the present study, the UAD of Inconel 718 was investigated under different cooling and/or lubrication conditions. The drilling tests were carried out at a constant cutting speed (15 m/min) and a feed (0.045 mm/rev) using uncoated and TiAlN-coated solid carbide drills under dry, conventional cutting fluid (CCF), and minimum quantity lubrication (MQL) conditions. The applicability of UAD to drilling Inconel 718 was evaluated in terms of thrust force, surface roughness, roundness error, burr formation, subsurface microstructure and microhardness, tool wear, and chip morphology. The test results showed that, when compared to conventional drilling (CD), UAD reduced the thrust force and improved the hole quality, tool life, and surface integrity under all conditions. Good surface finish, lower roundness error, and minimum burr heights were achieved under CCF conditions. MQL drilling provided lower thrust forces, better tool performance, and good subsurface quality characteristics. In addition, the simultaneous application of CCF-UAD and MQD-UAD showed significantly better performance, especially when using the coated tool.