2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 8Citation - Scopus: 8Experimental Investigation of Friction in Deep Drawing(Springer London Ltd, 2017) Kalkan, Hakan; Hacaloglu, Tugce; Kaftanoglu, BilginInvestigation of friction is carried out in the radial drawing region between the die and blank holder and also in the stretching zone over the punch in deep drawing. Two methods are developed to calculate the coefficient of friction in each zone using the experimentally determined data such as punch force diagrams and strain distributions obtained by an optical scanning system. The current methods differ from the existing techniques which are obtained in simulative tests. The proposed methods can be applied in room temperature and at elevated temperatures. Comparisons of friction coefficients are made with those obtained by other techniques.Article Citation - WoS: 11Citation - Scopus: 13Evaluating porthole and seamless aluminum tubes and lubricants for hydroforming(Springer London Ltd, 2015) Kaya, SerhatThe effect of extrusion method and lubrication on formability of aluminum tubes in hydroforming is experimentally investigated. First, the formability differences between seamless and porthole aluminum 6063 and 6260 alloy tubes, at T1 and T6 heat treatment conditions, are studied using free bulging. Second, the performances of a wide range of lubricants are ranked using zone-dependent friction tests, e.g., guiding zone and expansion zone, which emulate the two different interface mechanics existing in a THF operation. Results showed that seamless tubes, under any condition, give 5 % more expansion compared to porthole. Also, if a tube has T6 condition, seamless shows clear formability advantage over porthole. However, porthole is found to be quite satisfactory for tubes at T1 condition since they achieved more than % 10 expansion. "Zone-dependent" (expansion zone and guiding zone) lubrication tests are conducted using wet and dry lubricants. Results showed that while a dry lubricant performed best in the expansion zone, a wet lubricant performed best in the guiding zone.

