Search Results

Now showing 1 - 1 of 1
  • Article
    Citation - WoS: 15
    Citation - Scopus: 14
    Generalized Transportation Cost Spaces
    (Springer Basel Ag, 2019) Ostrovska, Sofiya; Ostrovskii, Mikhail I.
    The paper is devoted to the geometry of transportation cost spaces and their generalizations introduced by Melleray et al. (Fundam Math 199(2):177-194, 2008). Transportation cost spaces are also known as Arens-Eells, Lipschitz-free, or Wasserstein 1 spaces. In this work, the existence of metric spaces with the following properties is proved: (1) uniformly discrete metric spaces such that transportation cost spaces on them do not contain isometric copies of l(1), this result answers a question raised by Cuth and Johanis (Proc Am Math Soc 145(8):3409-3421, 2017); (2) locally finite metric spaces which admit isometric embeddings only into Banach spaces containing isometric copies of l(1); (3) metric spaces for which the double-point norm is not a norm. In addition, it is proved that the double-point norm spaces corresponding to trees are close to l(infinity)(d) of the corresponding dimension, and that for all finite metric spaces M, except a very special class, the infimum of all seminorms for which the embedding of M into the corresponding seminormed space is isometric, is not a seminorm.