Search Results

Now showing 1 - 4 of 4
  • Article
    Synthesis and Characterization of a Luminol Based Chemiluminescent Trimeric System
    (Springer/plenum Publishers, 2023) Kesimal, Busra; Balci, Burcu; Cakal, Deniz; Onal, Ahmet M.; Cihaner, Atilla
    A luminol based chemiluminescent trimeric system, namely 2,3-dihydro-5,8-di(thiophen-2-yl)phthalazine-1,4-dione (T2B-Lum), bearing thiophene rings as donor units and 2,3-dihydrophthalazine-1,4-dione as an acceptor unit was synthesized in two steps via donor-acceptor-donor approach using two different methods. It was found that T2B-Lum emits chemiluminescent light when exposed to H2O2 in a basic medium, and the presence of substituents and the type of aromatic ring bearing chemiluminescent active group have a direct effect on the compound's sensitivity. Among the members of a large family of metal ions, fluorescent and chemiluminescent T2B-Lum exhibited high sensitivity to Cu2+ and Fe3+ ions. Except for other metal cations (silver(I), cadmium(II), cobalt(II), iron(III), lithium(I), magnesium(II), manganese(II), nickel(II), zinc(II)), it has been observed that T2B-Lum is mostly sensitive to copper(II) ions with a detection limit value of 2.2 x 10(- 3) M. On the other hand, T2B-Lum was also found to exhibit a high sensitivity to extremely dilute aqueous solutions (e.g., 1:50.000 dilution) of blood samples, making it a promising candidate for use in forensic applications.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Correlations Between Hardness, Electrostatic Interactions, and Thermodynamic Parameters in the Decomposition Reactions of 3-Buten 3-Methoxy and Ethoxyethene
    (Springer/plenum Publishers, 2015) Hasanzadeh, Neda; Nori-Shargh, Davood; Kayi, Hakan; Javid, Nargess Rezaei
    Decomposition of the three isomeric compounds, 3-buten-1-ol (1), 3-methoxy-1-propene (2), and ethoxyethene (3), at two different (300 and 550 K) temperatures has been investigated by means of ab initio molecular orbital theory (MP2/6-311+G**//B3LYP/6-311+G**), hybrid-density functional theory (B3LYP/6-311+G**), the complete basis set, nuclear magnetic resonance analysis, and the electrostatic model associated with the dipole-dipole interactions. All three levels of theory showed that the calculated Gibbs free energy differences between the transition and ground state structures (Delta G (not equal)) increase from compound 1 to compound 3. The variations of the calculated Delta G (not equal) values can not be justified by the decrease of the calculated global hardness (eta) differences between the ground and transition states structures (i.e., Delta[eta(GS)-eta(TS)]). Based on the synchronicity indices, the transition state structures of compounds 1-3 involve synchronous aromatic transition structures, but there is no significant difference between their calculated synchronicity indices. The optimized geometries for the transition state structures of the decomposition reactions of compounds 1-3 consist in chair-like six-membered rings. The variation of the calculated activation entropy (Delta S (not equal)) values can not be justified by the decrease of Delta[eta(GS)-eta(TS)] parameter from compound 1 to compound 3. On the other hand, dipole moment differences between the ground and transition state structures [Delta(A mu (TS)-A mu (GS))] decrease from compound 1 to compound 3. Therefore, the electrostatic model associated with the dipole-dipole interactions justifies the increase of the calculated Delta G (not equal) values from compound 1 to compound 3. The correlations between Delta G (not equal), Delta[eta(GS)-eta(TS)], (Delta S (not equal)), k(T), electrostatic model, and structural parameters have been investigated.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On the Invariant Manifolds of the Fixed Point of a Second-Order Nonlinear Difference Equation
    (Springer/plenum Publishers, 2020) Turan, Mehmet
    This paper addresses the asymptotic approximations of the stable and unstable manifolds for the saddle fixed point and the 2-periodic solutions of the difference equationx(n+ 1)=alpha+beta x(n- 1)+x(n- 1)/x(n), where alpha> 0,0 <=beta<1$0\leqslant \beta and the initial conditionsx(- 1)andx(0)are positive numbers. These manifolds determine completely global dynamics of this equation. The theoretical results are supported by some numerical examples.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 15
    Atomistic Engineering of Chemiluminogens: Synthesis, Properties and Polymerization of 2,3-Dihydro Scaffolds
    (Springer/plenum Publishers, 2017) Algi, Melek Pamuk; Tirkeş, Seha; Oztas, Zahide; Cihaner, Atilla; Tirkes, Seha; Cihaner, Atilla; Algi, Fatih; Tirkeş, Seha; Cihaner, Atilla; Chemical Engineering; Chemical Engineering
    Two chemiluminescent compounds containing 2,5-di(thien-2-yl)pyrrole and pyridazine units, namely 5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (5) and 6-phenyl-5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (6), were successfully synthesized and electrochemically polymerized. The compounds have chemiluminescent properties and glow in the presence of hydrogen peroxide in basic medium. The intensity of the glow can be increased dramatically by using Fe3+ ions, hemin (1.0 ppm) or blood samples (1.0 ppm) as catalyst. The compounds 5 and 6 have one well-defined irreversible oxidation peak at 1.08 V and 1.33 V vs Ag/AgCl, respectively. Electrochemical polymerization of both 5 and 6 were carried out successfully by repeating potential scanning in the presence of BF3. Et2O in an electrolyte solution of 0.1 M LiClO4 dissolved in acetonitrile. The electronic band gaps (E-g) of the polymers P5 and P6 were found to be 2.02 eV and 2.16 eV, respectively. On the other hand, the corresponding polymers are electroactive and exhibited electrochromic features.