3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 12Citation - Scopus: 12A Systematic Approach To Optimizing Energy-Efficient Automated Systems With Learning Models for Thermal Comfort Control in Indoor Spaces(Mdpi, 2023) Erisen, SerdarEnergy-efficient automated systems for thermal comfort control in buildings is an emerging research area that has the potential to be considered through a combination of smart solutions. This research aims to explore and optimize energy-efficient automated systems with regard to thermal comfort parameters, energy use, workloads, and their operation for thermal comfort control in indoor spaces. In this research, a systematic approach is deployed, and building information modeling (BIM) software and energy optimization algorithms are applied at first to thermal comfort parameters, such as natural ventilation, to derive the contextual information and compute the building performance of an indoor environment with Internet of Things (IoT) technologies installed. The open-source dataset from the experiment environment is also applied in training and testing unique black box models, which are examined through the users' voting data acquired via the personal comfort systems (PCS), thus revealing the significance of Fanger's approach and the relationship between people and their surroundings in developing the learning models. The contextual information obtained via BIM simulations, the IoT-based data, and the building performance evaluations indicated the critical levels of energy use and the capacities of the thermal comfort control systems. Machine learning models were found to be significant in optimizing the operation of the automated systems, and deep learning models were momentous in understanding and predicting user activities and thermal comfort levels for well-being; this can optimize energy use in smart buildings.Article Citation - WoS: 17Citation - Scopus: 23Regarding Solid Oxide Fuel Cells Simulation Through Artificial Intelligence: a Neural Networks Application(Mdpi, 2019) Baldinelli, Arianna; Barelli, Linda; Bidini, Gianni; Bonucci, Fabio; Iskenderoglu, Feride CansuBecause of their fuel flexibility, Solid Oxide Fuel Cells (SOFCs) are promising candidates to coach the energy transition. Yet, SOFC performance are markedly affected by fuel composition and operative parameters. In order to optimize SOFC operation and to provide a prompt regulation, reliable performance simulation tools are required. Given the high variability ascribed to the fuel in the wide range of SOFC applications and the high non-linearity of electrochemical systems, the implementation of artificial intelligence techniques, like Artificial Neural Networks (ANNs), is sound. In this paper, several network architectures based on a feedforward-backpropagation algorithm are proposed and trained on experimental data-set issued from tests on commercial NiYSZ/8YSZ/LSCF anode supported planar button cells. The best simulator obtained is a 3-hidden layer ANN (25/22/18 neurons per layer, hyperbolic tangent sigmoid as transfer function, obtained with a gradient descent with adaptive learning rate backpropagation). This shows high accuracy (RMS = 0.67% in the testing phase) and successful application in the forecast of SOFC polarization behaviour in two additional experiments (RMS in the order of 3% is scored, yet it is reduced to about 2% if only the typical operating current density range of real application is considered, from 300 to 500 mA.cm(-2)). Therefore, the neural tool is suitable for system simulation codes/software whether SOFC operating parameters agree with the input ranges (anode feeding composition 0-48%(vol) H-2, 0-38%(vol) CO, 0-45%(vol) CH4, 9-32%(vol) CO2, 0-54%(vol) N-2, specific equivalent hydrogen flow-rate per unit cell active area 10.8-23.6 mL.min(-1).cm(-2), current density 0-1300 mA.cm(-2) and temperature 700-800 degrees C).Review Citation - WoS: 17Citation - Scopus: 29Review of Modern Forest Fire Detection Techniques: Innovations in Image Processing and Deep Learning(Mdpi, 2024) Ozel, Berk; Alam, Muhammad Shahab; Khan, Muhammad UmerFire detection and extinguishing systems are critical for safeguarding lives and minimizing property damage. These systems are especially vital in combating forest fires. In recent years, several forest fires have set records for their size, duration, and level of destruction. Traditional fire detection methods, such as smoke and heat sensors, have limitations, prompting the development of innovative approaches using advanced technologies. Utilizing image processing, computer vision, and deep learning algorithms, we can now detect fires with exceptional accuracy and respond promptly to mitigate their impact. In this article, we conduct a comprehensive review of articles from 2013 to 2023, exploring how these technologies are applied in fire detection and extinguishing. We delve into modern techniques enabling real-time analysis of the visual data captured by cameras or satellites, facilitating the detection of smoke, flames, and other fire-related cues. Furthermore, we explore the utilization of deep learning and machine learning in training intelligent algorithms to recognize fire patterns and features. Through a comprehensive examination of current research and development, this review aims to provide insights into the potential and future directions of fire detection and extinguishing using image processing, computer vision, and deep learning.

