2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 3Citation - Scopus: 3Shared 6mer Peptides of Human and Omicron (21k and 21l) at Sars-Cov Mutation Sites(Mdpi, 2022) Adiguzel, Yekbun; Shoenfeld, YehudaWe investigated the short sequences involving Omicron 21K and Omicron 21L variants to reveal any possible molecular mimicry-associated autoimmunity risks and changes in those. We first identified common 6mers of the viral and human protein sequences present for both the mutant (Omicron) and nonmutant (SARS-CoV-2) versions of the same viral sequence and then predicted the binding affinities of those sequences to the HLA supertype representatives. We evaluated change in the potential autoimmunity risk, through comparative assessment of the nonmutant and mutant viral sequences and their similar human peptides with common 6mers and affinities to the same HLA allele. This change is the lost and the new, or de novo, autoimmunity risk, associated with the mutations in the Omicron 21K and Omicron 21L variants. Accordingly, e.g., the affinity of virus-similar sequences of the Ig heavy chain junction regions shifted from the HLA-B*15:01 to the HLA-A*01:01 allele at the mutant sequences. Additionally, peptides of different human proteins sharing 6mers with SARS-CoV-2 proteins at the mutation sites of interest and with affinities to the HLA-B*07:02 allele, such as the respective SARS-CoV-2 sequences, were lost. Among all, any possible molecular mimicry-associated novel risk appeared to be prominent in HLA-A*24:02 and HLA-B*27:05 serotypes upon infection with Omicron 21L. Associated disease, pathway, and tissue expression data supported possible new risks for the HLA-B*27:05 and HLA-A*01:01 serotypes, while the risks for the HLA-B*07:02 serotypes could have been lost or diminished, and those for the HLA-A*03:01 serotypes could have been retained, for the individuals infected with Omicron variants under study. These are likely to affect the complications related to cross-reactions influencing the relevant HLA serotypes upon infection with Omicron 21K and Omicron 21L.Article Citation - WoS: 4Citation - Scopus: 7Real-Time Learning and Monitoring System in Fighting Against Sars-Cov in a Private Indoor Environment(Mdpi, 2022) Erisen, SerdarThe SARS-CoV-2 virus has posed formidable challenges that must be tackled through scientific and technological investigations on each environmental scale. This research aims to learn and report about the current state of user activities, in real-time, in a specially designed private indoor environment with sensors in infection transmission control of SARS-CoV-2. Thus, a real-time learning system that evolves and updates with each incoming piece of data from the environment is developed to predict user activities categorized for remote monitoring. Accordingly, various experiments are conducted in the private indoor space. Multiple sensors, with their inputs, are analyzed through the experiments. The experiment environment, installed with microgrids and Internet of Things (IoT) devices, has provided correlating data of various sensors from that special care context during the pandemic. The data is applied to classify user activities and develop a real-time learning and monitoring system to predict the IoT data. The microgrids were operated with the real-time learning system developed by comprehensive experiments on classification learning, regression learning, Error-Correcting Output Codes (ECOC), and deep learning models. With the help of machine learning experiments, data optimization, and the multilayered-tandem organization of the developed neural networks, the efficiency of this real-time monitoring system increases in learning the activity of users and predicting their actions, which are reported as feedback on the monitoring interfaces. The developed learning system predicts the real-time IoT data, accurately, in less than 5 milliseconds and generates big data that can be deployed for different usages in larger-scale facilities, networks, and e-health services.

