Search Results

Now showing 1 - 1 of 1
  • Article
    Citation - WoS: 7
    On the Approximation of Analytic Functions by the q-bernstein Polynomials in the Case q > 1
    (Kent State University, 2010) Ostrovska, Sofiya
    Since for q > 1, the q-Bernstein polynomials B(n,q) are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f is an element of C[0, 1] and admits an analytic continuation f(z) into {z : |z| < a}, then B(n,q) (f; z) -> f (z) as n -> infinity, uniformly on any compact set in {z : |z| < a}.