2 results
Search Results
Now showing 1 - 2 of 2
Conference Object Citation - Scopus: 8An Empirical Comparison of Customer Behavior Modeling Approaches for Shopping List Prediction(Institute of Electrical and Electronics Engineers Inc., 2018) Peker,S.; Kocyigit,A.; Erhan Eren,P.Shopping list prediction is a crucial task for companies as it can enable to provide a specific customer a personalized list of products and improve customer satisfaction and loyalty as well. To predict customer behaviors, many studies in the literature have employed customer behavior modeling approaches which are individual-level and segment-based. However, previous efforts to predict customers' shopping lists have rarely employed these state-of-the-art approaches. In this manner, this paper introduces the segment based approach into the shopping list prediction and then presents an empirical comparison of the individual-level and the segment-based approaches in this problem. For this purpose, well-known machine learning classifiers and customers' purchase history are employed, and the comparison is performed on a real-life dataset by conducting a series of experiments. The results suggest that there is no clear winner in this comparison and the performances of customer behavior modeling approaches depend on the machine learning algorithm employed. The study can help researchers and practitioners to understand different aspects of using customer behavior modeling approaches in the shopping list prediction. © 2018 Croatian Society MIPRO.Conference Object Citation - Scopus: 6A Mini-Review on Radio Frequency Fingerprinting Localization in Outdoor Environments: Recent Advances and Challenges(Institute of Electrical and Electronics Engineers Inc., 2022) Dogan,D.; Dalveren,Y.; Kara,A.A considerable growth in demand for locating the source of emissions in outdoor environments has led to the rapid development of various localization methods. Among these, RF fingerprinting (RFF) localization has become one of the most promising method due to its unique advantages resulted from the recent developments in machine learning techniques. In this short review, it is aimed to assess the existing RFF methods in the literature for outdoor localization. For this purpose, firstly, the current state of RFF localization methods in outdoor environments are overviewed. Then, the main research challenges in the development of RFF localization are highlighted. This is followed by a brief discussion on the open issues in order to give future research directions. Furthermore, the research efforts currently undertaken by the authors are briefly addressed. © 2022 IEEE.

