Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 25
    Citation - Scopus: 26
    Production and Properties of Tooth-Colored Yttria Stabilized Zirconia Ceramics for Dental Applications
    (Elsevier Sci Ltd, 2018) Kaplan, Melis; Park, Jongee; Kim, Soo Young; Ozturk, Abdullah
    Dense zirconia stabilized with 3 mol% yttria ceramics were produced in disc shape by first cold isostatically pressing at 100 MPa and then sintering at 1450 degrees C at ambient laboratory conditions. Coloring was accomplished by immersion the discs in NiCl2, MoCl3, and NiCl2 + MoCl3 solutions for 5, 30, and 60 s. Different concentrations (0.1, 0.25, and 0.5 wt%) were applied to get the color of natural tooth. The density, color, microhardness, fracture toughness, compressive strength, and wear rate of the discs were measured to evaluate the suitability of the colored discs for dental applications. Color assessments were made by measuring CIE Lab L*, a*, b, and Delta E* values. Low temperature degradation of the samples was evaluated by aging sensitivity tests in autoclave for 2, 4, and 6 h. Results have shown that color produced depends on the kind and concentration of the colorant solution while time of immersion has no significant effect on coloring process. Coloring solutions containing 0.1 and 0.25 wt% MoCl3 provided clinically acceptable color with the Delta E* value ranging from 5.16 to 6.42 for dental applications.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 24
    Mechanical and Biological Properties of Al2o3< and Tio2 Co-Doped Zirconia Ceramics
    (Elsevier Sci Ltd, 2017) Agac, Ozlem; Gozutok, Melike; Sasmazel, Hilal Turkoglu; Ozturk, Abdullah; Park, Jongee
    Various amounts (ranging from 0 to 2 wt%) of TiO2 and Al2O3 were mono and co-doped to tetragonal zirconia ceramic containing 3 mol% yttria (3Y-TZP) by mechanical ball milling. Powders were compacted by uniaxial pressing at a pressure of 23 MPa. The compacts were pressureless sintered at 1450 degrees C for 2 h. Density, hardness, fracture toughness, and cell attachment of the co-doped 3Y-TZP ceramics were measured with respect to dopant addition to determine the effects of the kind and amount of dopants on the properties. The results show that density decreased gradually as the amount of dopant was increased. The mechanical properties showed the maximum value when 0.5 wt% TiO2 and 1.0 wt% Al2O3 were co-doped to 3Y-TZP. Crystalline phase formation and microstructural morphology were investigated by XRD and SEM analyses to explain the variations in the properties. Co-doping of TiO2 and Al2O3 to 3Y-TZP did not have an influence on the phases present, but decreased the grain size. The co-doping also affected the cell attachment and the growth on the surface of the zirconia ceramics.