4 results
Search Results
Now showing 1 - 4 of 4
Article Synthesis and Electropolymerization of a Selenophene Based Chemiluminescent Monomer and Its Use in Blood Detection(Elsevier Sci Ltd, 2025) Balci, Burcu; Cakal, Deniz; Cihaner, AtillaA new selenophene based trimeric chemiluminescent compound, namely 5,7-di(selenophen-2-yl)-2,3-dihydrothieno[3,4-d]pyridazine-1,4-dione (S2T-Lum), was synthesized in two steps via electron donor-acceptor-donor approach. Its chemiluminescent reaction with hydrogen peroxide was investigated in an alkaline solution in the presence of various catalysts such as different metal ions, hemin and blood samples and the results were compared with its thiophene analogue (T2T-Lum) and luminol. It was found that S2T-Lum was very sensitive to copper(II) and iron(III) ions, and blood samples. Also, it can be easily concluded that S2T-Lum as a new member of luminol type compounds is a potential candidate for the detection of blood findings in forensic science. Furthermore, S2T-Lum has an irreversible oxidation peak at 1.28 V vs Ag/AgCl, which is responsible from its electropolymerization. S2T-Lum was successfully polymerized electrochemically via potentiodynamic electrolysis without cleavage of its chemiluminescent active appendage. To the best of our knowledge, its corresponding polymer PS2T-Lum film is the first member of selenophene based luminol type electroactive polymers.Article Citation - WoS: 8Citation - Scopus: 8Improvement of Optical Properties and Redox Stability of Poly(3,4-Ethylenedioxythiophene)(Elsevier Sci Ltd, 2018) Ertan, Salih; Cihaner, AtillaIn order to improve the optical properties and redox stability of poly(3,4-ethylenedioxythiophene) (PEDOT) without changing its electrochemical and electrochromic behaviour, it was supported with alkyl-substituted polyhedral oligomeric silsesquioxane (POSS) cage. The corresponding copolymers were obtained electrochemically via potentiostatic or potentiodynamic methods and compared to the parent homopolymers. Electrochemical polymerization of EDOT and POSS containing EDOT called EDOT-POSS in various monomer feed ratios was performed in an electrolyte solution of 0.1 M TBAPF(6) dissolved in a mixture of dichloromethane and acetonitrile (1/3: v/v). Just as PEDOT, the copolymers represented the similar band gap (1.61 eV), redox and electrochromic behaviors. On the other hand, when compared to the parent PEDOT, the presence of POSS cages in the copolymer backbone improved the redox stability and optical properties of PEDOT such as higher percent transmittance change (65% at 621 nm), higher transparency at oxidized state, lower switching time (similar to 1.0 s) and higher coloration efficiency (463 cm(2)/C for 95% switching) as well as higher electrochemical stability (86% of its electroactivity retains after 1750 cycles under ambient conditions).Article Citation - WoS: 11Citation - Scopus: 11Electrochemical and Optical Properties of Substituted Phthalimide Based Monomers and Electrochemical Polymerization of 3,4-Ethylenedioxythiophene Oligomeric Silsesquioxane (poss) Analogue(Elsevier Sci Ltd, 2019) Cakal, Deniz; Ertan, Salih; Cihaner, Atilla; Onal, Ahmet M.A new series of donor-acceptor-donor type trimeric monomers bearing substituted phthalimide units as acceptor units and thiophene and 3,4-ethylenedioxythiophene (EDOT) as donor units was synthesized and characterized. The strength of acceptor units and intramolecular charge transfer between donor and acceptor units were investigated by using electrochemical and optical methods. The main advantage of phthalimide unit over other acceptor units is the ease of its functionalizability. Thus, utilizing this property, a phthalimide derivative (E2P-POSS) bearing polyhedral oligomeric silsesquioxane (POSS) cage was introduced successfully with EDOT and polymerized electrochemically. The corresponding electroactive polymer, PE2P-POSS, has a band gap of 1.72 eV and is an electrochromic polymer: gray when neutralized and eggplant purple when oxidized.Article Citation - WoS: 13Citation - Scopus: 13Effect of the Donor Units on the Properties of Fluorinated Acceptor Based Systems(Elsevier Sci Ltd, 2021) Cakal, Deniz; Akdag, Akin; Cihaner, Atilla; Onal, Ahmet M.A new series of monomers in the donor-acceptor-donor array, namely 5-fluoro-4,7-di(furan-2-yl)benzo[c][1,2,5] thiadiazole (F2BT-F), and 5-fluoro-4,7-di(selenophen-2-yl)benzo[c][1,2,5] thiadiazole (S2BT-F), bearing 5-fluorobenzo[c][1,2,5]-thiadiazole as the acceptor moiety and furan and selenophene as the electron donating groups was synthesized and polymerized electrochemically. To compare heteroatom effect, thiophene analogue of newly synthesized (FBT)-B-2-F and S2BT-F namely, (5-fluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5] thiadiazole (T2BT-F)) and its corresponding polymer were also synthesized. Effect of donor units on the electrochemical and optical properties of fluorinated acceptor based systems was investigated in terms of the effect of different sized heteroatoms in five-membered rings on the dihedral angle and planarity. Theoretical calculations also suggested a deviation from planarity upon fluorination. Moreover, electrochemically obtained polymers possess low bandgap values (1.62 eV-1.68 eV for PF2BT-F and PS2BT-F, respectively) and exhibited electrochromic properties with relatively low switching times.

