Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Structural and Optical Properties of Thermally Evaporated (gase)0.75-(gas)0.25 Thin Films
    (Elsevier Gmbh, 2021) Isik, M.; Işık, Mehmet; Emir, C.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    GaSe and GaS binary semiconducting compounds are layered structured and have been an attractive research interest in two-dimensional material research area. The present paper aims at growing (GaSe)0.75 - (GaS)0.25 (or simply GaSe0.75S0.25) thin film and investigating its structural and optical properties. Thin films were prepared by thermal evaporation technique using evaporation source of its single crystal grown by Bridgman method. The structural properties were revealed using x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. XRD pattern and EDS analyses indicated that thin films annealed at 300 ?C were successfully deposited and its structural characteristics are well-consistent with its single crystal form. Surface morphology was studied by means of SEM and AFM measurements. Optical properties were investigated by transmission and Raman spectroscopy techniques. Raman spectrum exhibited three peaks around 172, 242 and 342 cm-1. Analyses of transmission spectrum revealed the direct band gap energy as 2.34 eV. The mixed compounds of GaSe0.75S0.25 were prepared for the first time in a thin film form and the results of the present paper would provide valuable information to research area in which layered compounds have been studied in detail.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 10
    Optical Conduction in Amorphous Gase Thin Films
    (Elsevier Gmbh, 2016) Qasrawi, A. F.; Khanfar, Hazem. K.; Kmail, Renal R. N.
    In this work, the optical conduction mechanism in GaSe thin films was explored by means of dielectric spectral analysis in the 270-1000 THz range of frequency. The GaSe films which are found to be amorphous in nature are observed to follow the Lorentz approach for optical conduction. The modeling of the optical conductivity which takes into account the damped electronic motion resulting from the collision of photogenerated carriers with impurities, phonons and other damping sources allowed determining the optical conduction parameters. Particularly, an average carrier scattering time, a free carrier density, a reduced resonant frequency, a field effect mobility and an electron bounded plasma frequency of 0.142 (fs), 1.7 x 10(19) (cm(-3)), 875.8 (THz), 1.25 (cm(2)/Vs) and 82.8 (THz), respectively, were determined. These parameters are promising as they indicate the applicability of GaSe in the technology of mid-infrared plasmonic nanoantennas. In addition, the dielectric optical signal which displayed a resonance peak at 500 THz seems to be attractive for use in passive modes operating optoelectronic devices like field effect transistors as they exhibit an increasing signal quality factor with decreasing incident light frequency (C) 2016 Elsevier GmbH. All rights reserved.