2 results
Search Results
Now showing 1 - 2 of 2
Review Citation - WoS: 83Citation - Scopus: 92A Review on the Development of the Electrochemical Hydrogen Compressors(Elsevier, 2021) Durmus, Gizem Nur Bulanik; Colpan, C. Ozgur; Devrim, YilserHydrogen should be stored at high pressure and high purity, especially when utilized in fuel cells. Conventionally, mechanical compressors are used for pressurization of hydrogen; however, this technology has disadvantages such as noise and vibration during operation due to their moving parts. Electrochemical hydrogen compressors (ECHC) have emerged as an alternative solution, as these devices can purify and compress hydrogen electrochemically in a single device. This review provides a comprehensive overview of key components and management strategies of the ECHC systems. This review will also provide an overview of different hydrogen compression technologies and provides a comprehensive overview of the latest developments and current issues and future of ECHCs. For this purpose, firstly, the advantages and disadvantages of ECHC compared to mechanical compressors are explained. Then, recent studies on hydrogen purification methods are given. The working principle of ECHC, material development studies and mathematical modeling of ECHCs are also discussed.Article Citation - WoS: 19Citation - Scopus: 20Synthesis, Characterization, and Enhanced Formic Acid Electrooxidation Activity of Carbon Supported Mnox Promoted Pd Nanoparticles(Elsevier, 2018) Bulut, Ahmet; Yurderi, Mehmet; Alal, Orhan; Kivrak, Hilal; Kaya, Murat; Zahmakiran, MehmetFormic acid (HCOOH) is one of the promising fuels for direct liquid fed fuel cells. However, CO poisoning is a major challenge for the development of effective catalytic system for formic acid electrooxidation (FAEO). Herein, a novel CO-resistive activated carbon supported Pd-MnOx bimetallic catalyst (Pd-MnOx/C) was presented for FAEO. Pd-MnOx/C catalyst was prepared via simple and reproducible surfactant-free deposition-reduction technique. The characterization of this novel Pd-MnOx/C catalyst was performed by inductively coupled plasma-optical emission spectroscopy (ICP-OES), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), bright field transmission electron microscopy (BFTEM), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), and scanning transmission electron microscope-energy dispersive X-ray spectroscopy (STEM-EDX). The characterization results revealed that Pd and MnOx nanoparticles (NPs) were well dispersed and separately nucleated with a mean diameter of 2.9 nm on the surface of active carbon. FAEO studies were performed on both Pd-MnOx/C and Pd/C catalysts to comprehend the effect of separately formed MnOx on the electrocatalytic activity of Pd NPs. The electrochemical measurements were carried out by using Cyclic Voltammetry (CV) and Chronoamperometry (CA), CO-Strriping Voltammetry, Lineer Sweep Voltammetry (LSV), Electrochemical impedance spectroscopy (EIS) techniques. Electrochemical results revealed that FAEO was activated by the addition of MnOx. Pd-0.6-Mn-0.4 exhibited the optimum catalytic activity with 1.05 A/mg Pd current density. The sum of their results clearly points that the existence of MnOx NPs enhances the electrocatalytic activity of Pd NPs by increasing their CO-resistivity and durability throughout the FAEO. (C) 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

