2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 5Citation - Scopus: 6Systematic Investigation of the Effects of Unidirectional Links on the Lifetime of Wireless Sensor Networks(Elsevier, 2013) Ozyer, Sibel T.; Tavli, Bulent; Dursun, Kayhan; Koyuncu, MuratLink unidirectionality is a commonly encountered phenomenon in wireless sensor networks (WSNs), which is a natural result of various properties of wireless transceivers as well as the environment. Transmission power heterogeneity and random irregularities are important factors that create unidirectional links. Majority of the internode data transfer mechanisms are designed to work on bidirectional links (i.e., due to the lack of a direct reverse path, handshaking cannot be performed between a transmitter and receiver) which render the use of unidirectional links infeasible. Yet, there are some data transfer mechanisms designed specifically to operate on unidirectional links which employ distributed handshaking mechanisms (i.e., instead of using a direct reverse path, a multi-hop reverse path is used for the handshake). In this study, we investigate the impact of both transmission power heterogeneity and random irregularities on the lifetime of WSNs through a novel linear programming (LP) framework both for networks that utilize only bidirectional links and for those that can use bidirectional links as well as unidirectional links. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 62Citation - Scopus: 78Hybrid Microgrid for Microfinance Institutions in Rural Areas - a Field Demonstration in West Africa(Elsevier, 2019) Ayodele, Esan; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, RytisWe present a hybrid energy microgrid optimization model for a microbank in a remote rural residential area. The model is based on the use of renewable (wind turbines & solar photovoltaic (PV)) and conventional (gasoline generators) energy sources and battery storage systems. We conducted a detailed assessment of a typical microbank's load, residential loads and energy resources in a village called Ajasse-Ipo in Kwara State, Nigeria. We performed the modeling of a hybrid microgrid system, followed by an economic analysis and sensitivity analysis to optimize the hybrid system design. We performed simulations based on the energy resources available (solar PV, wind, gasoline generator & battery energy storage system) to satisfy the energy demands of the microbank, while the excess energy was supplied to meet the demand of the community loads, i.e. water pumping machine and rural home lighting. The results obtained showed that the hybrid system comprising the solar PV/battery/diesel was most techno-economically viable with a Net Present Cost (NPC) and Cost of Energy (COE) of $468,914 and 0.667$/kWh, respectively. Comparing these results with those obtained using analytical methods, the solar PV, battery and converter sizes obtained were slightly higher than the optimal system configurations as produced by HOMER. The proposed hybrid energy system also allowed to achieve almost 50% reductions in CO2, CO, unburned hydrocarbons, particulate matter, SO2 & NO2. The system can be applicable for other rural regions in the developing countries with similar environmental conditions.

