Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Ab Initio Study of Structural and Electronic Properties of Single Crystal and Core/Shell Ii-Vi Semiconductor Nanowires
    (Elsevier, 2016) Pekoz, R.
    Structural and electronic properties of pristine and H-passivated wurtzite type ZnSe, ZnTe nanowires and ZnX/ZnY (X = Se(Te) and Y = Te(Se)) core/shell nanowires oriented along the [0001] direction have been investigated using first-principles calculations. The changes in the electronic structure of the nanowires due to the quantum confinement and morphology have been searched. Quantum confinement increases the band gap energy as the diameters of ZnSe and ZnTe nanowires decrease. Both homostructured and heterostructured nanowires are found to show a semiconducting character with direct band gaps at Gamma-point. Changing the morphology from homostructured nanowires to heterostructured core/shell nanowires has an important impact on the electronic structure. For instance, the charge separation of electrons and holes along the infinite direction of core/shell nanowires shows a strong preference for electron(hole) states localized inside ZnSe(ZnTe) regions. (C) 2016 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 4
    Pressure and Spin Effect on the Stability, Electronic and Mechanic Properties of Three Equiatomic Quaternary Heusler (fevhfz, Z = Al, Si, and Ge) Compounds
    (Elsevier, 2021) Surucu, G.; Gencer, A.; Surucu, O.; Usanmaz, D.; Candan, A.
    In this paper, three equiatomic quaternary Heusler compounds -FeVHfZ (Z = Al, Si, and Ge) - are investigated for their structural, magnetic, electronic, mechanic, and lattice dynamic properties under pressure effect. These compounds are optimized for under three structural types and three magnetic phases: beta is the most stable structure with ferromagnetic phase. The electronic properties reveal that FeVHfAl is a half-metal, and that FeVHfSi and FeVHfGe are spin gapless semiconductors. In addition to electronic band structure, possible hybridization and partial density of states are presented. Furthermore, the mechanical properties are studied, and the three-dimensional direction-dependent mechanical properties are visualized under varying pressure effects. Our results reveal the half-metal and spin gapless semiconductor nature of the ferromagnetic FeVHfZ com-pounds, making them promising materials for spintronics applications.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 7
    Design of Novel Tellurium and Selenium Containing Semiconducting Polymers Using Quantum Mechanical Tools
    (Elsevier, 2017) Kaya, Birnur; Kayi, Hakan
    Structural, optical and electronic properties of the two novel donor-acceptor-donor type conjugated polymers based on 4,7-di(selenophen-2-yl)benzo[c][1,2,5]selenadiazole (SeSeSe) and 4,7-di(tellurophen-2-yl)benzo[c][1,2,5]telluradiazole (TeTeTe) are investigated by means of quantum chemical calculations utilizing conventional and long-range corrected hybrid functionals. The lowest energy structures of the SeSeSe and TeTeTe monomers and oligomers are revealed through conformational analysis, while their electronic properties are obtained from density functional theory (DFT) molecular orbital calculations and optical properties are obtained from the time dependent DFT (TD-DFT) calculations for UV-vis absorption spectra. Electronic band gaps that directly affect the semiconducting properties of these novel polymers are calculated by using linear regression analysis of DFT data, and also periodic boundary conditions calculations (PBC-DFT). Our results indicate that SeSeSe and TeTeTe polymers have considerably lower band gap values than that of their furan-, thiophene-, benzooxadiazole- and benzothiadiazole-based analogs. The novel SeSeSe and TeTeTe polymers with improved optical and electronic properties may have an important role in the near future, especially for the optoelectronic and photovoltaic applications. (C) 2016 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 34
    Enhanced Hydrogen Storage of a Functional Material: Hf2cf2< Mxene With Li Decoration
    (Elsevier, 2021) Gencer, Aysenur; Aydin, Sezgin; Surucu, Ozge; Wang, Xiaotian; Deligoz, Engin; Surucu, Gokhan
    In this paper, the hydrogen storage properties of the Li-decorated stable Hf2CF2 MXene layer, obtained by the exfoliation of Al from Hf2AlC and F-termination, are considered by using first-principles calculations based on Density Functional Theory. First, the stability characteristics of the host structure (Hf2CF2 layer) are examined by investigating bulk Hf2AlC. To enhance the adsorbed number of H-2 molecules, the well-defined initial H-2 coordinates are constructed by CLICH (Cap-Like Initial Conditions for Hydrogens) and Monte Carlo-based algorithms. After the geometry optimizations of the designed H-2 systems on the Li/Hf2CF2 layer, the adsorption energies of nH(2)/Li/Hf2CF2 n = 1-10, 15, 20 and 25 systems are calculated, and the suitable values (0.2-0.6 eV/H-2) are obtained up to 15H(2). For n = 20 and 25 systems, which have adsorption energies of 0.15 eV/H-2 and 0.16 eV/H-2, respectively. The structural properties and adsorption geometries of these molecules are analyzed. Additionally, the partial density of the states, electron density difference maps, and Mulliken atomic charges are presented to identify the actual binding mechanism of the systems. The results reveal that the Li-decorated Hf2CF2 MXene layer can be preferred for the hydrogen storage applications due to its stable nature and the convenient adsorption characteristics.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Selective Adsorption of a Supramolecular Structure on Flat and Stepped Gold Surfaces
    (Elsevier, 2018) Pekoz, Rengin; Donadio, Davide
    Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals. (C) 2017 Elsevier B.V. All rights reserved.