2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 4Citation - Scopus: 7Protective Effects of Bosentan Via Endothelin Receptor Antagonism in Experimental Ischemia-Reperfusion Injury in the Lower Limb of Rats(Dove Medical Press Ltd, 2025) Demirtas, Hueseyin; Oezer, Abdullah; Guelcan, Mehmet Burak; Yigman, Zeynep; Kuecuek, Ayseguel; Tekin, Esra; Arslan, MustafaObjective: This study aimed to evaluate the protective effects of bosentan, a dual endothelin receptor antagonist, against skeletal muscle ischemia-reperfusion injury (IRI) in rats. Methods: A total of 24 male Wistar Albino rats were divided into four groups: control (C, n=6), bosentan-treated (B, n=6), ischemiareperfusion (IR, n=6), and bosentan plus ischemia-reperfusion (B+IR, n=6). Bosentan (10 mg/kg) was administered 30 minutes prior to reperfusion. In the IR and B+IR groups, ischemia was induced using vascular bulldog clamps for 45 minutes, followed by 120 minutes of reperfusion. Results: Histological and biochemical assessments revealed significant differences among the groups. The disorganization and degeneration scores of the muscle cells in the B+IR group were significantly lower than those in the IR group (P = 0.001). The degree of interstitial edema in the IR group was markedly more severe than in the C and B groups (all P < 0.001), while the interstitial edema score in the B+IR group was significantly lower than that in the IR group (P < 0.001). The total muscle injury scores were markedly reduced in the B+IR group compared to the IR group (P < 0.001). Biochemically, TAS levels were significantly higher in the B+IR group compared to the IR group (1.03 f 0.18 vs 0.59 f 0.10 mmol/L, P = 0.016). Conversely, TOS (1.97 f 0.39 vs 2.86 f 0.43 IU/mg, P < 0.001) and OSI levels (P < 0.001) were significantly lower in the B+IR group. Additionally, paraoxonase (PON-1) enzyme activity was significantly reduced in the B+IR group compared to the IR group (P < 0.001). These findings suggest that bosentan exerts its protective effects by antagonizing endothelin-1 receptors, thereby mitigating vasoconstriction, oxidative stress, and inflammation. The observed reductions in muscle cell disorganization, interstitial edema, hemorrhage, neutrophil infiltration and oxidative stress markers underscore bosentan's potential as a therapeutic agent for managing ischemia-reperfusion injury. Conclusion: Bosentan demonstrates significant protective effects against skeletal muscle IRI by reducing oxidative stress and inflammation through endothelin receptor antagonism. These findings underscore bosentan's potential as a therapeutic agent for mitigating ischemia-reperfusion injury in vascular surgeries and managing critical limb ischemia in clinical settings. Further research is warranted to explore the long-term effects of bosentan on muscle recovery and systemic health following ischemia-reperfusion injury.Article Citation - WoS: 7Citation - Scopus: 9Ozone Administration Reduces Myocardial Ischemia Reperfusion Injury in Streptozotocin Induced Diabetes Mellitus Rat Model(Dove Medical Press Ltd, 2024) Gülcan, M.B.; Demirtaş, H.; Özer, A.; Yığman, Z.; Dursun, A.D.; Arslan, M.; Oktar, G.L.Objective: This study aimed to demonstrate whether ozone has cardioprotective effects on the myocardial ischemia-reperfusion injury (IRI) in rats with streptozotocin(STZ)-induced diabetes. Methods: A total of 38 male Wistar Albino rats were divided into five groups as follows: control group (group C,n=6), diabetic group (group D,n=6), diabetic ozone group (group DO,n=6), diabetic-ischemia/reperfusion (group DIR,n=6), diabetic-ischemia/reperfusion-ozone (group DIRO,n=6). Six rats died during this period and two died because of surgical complications. A myocardial ischemia-reperfusion model was created using a thoracotomy incision from 4th intercostal space. The LAD was ligated using an 8–0 prolene suture for 30min. Ozone was administered intraperitoneally(1mg/kg) 5min before reperfusion. The reperfusion time was 120 min. At the end of the reperfusion procedure, myocardial tissue histopathological examinations, and serum biochemical analyses were performed. Results: The percentage of TUNEL(+) cardiomyocytes/HPF was significantly higher in the DIR group than in the C, D, and DO groups. Conversely, TUNEL positivity was significantly lower in the DIRO group than in the DIR group. The IRI score was significantly higher in the DIR and DIRO groups than that in the C, D, and DO groups. In contrast, the IRI damage score in the DIRO group was significantly lower than that in the DIR group. Serum MDA levels were significantly higher in the DIR group than in the C, D, and DO groups. Similarly, MDA levels were significantly higher in the DIRO group than in the C and D groups. CAT activity was significantly higher in the DIR group than in the C and D groups. SOD activity was significantly higher in the DIR group than in the C and DO groups. Conclusion: Our study showed that ozone exerts cardioprotective effects in STZ-induced diabetic rats through its antioxidant role against oxidative stress. Both biochemical and histological analyses clearly revealed that ozone has beneficial effects against IRI in the diabetic rat myocardium. © 2024 Gülcan et al.

