Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 36
    Citation - Scopus: 40
    On the Improvement of Analytic Properties Under the Limit Q-Bernstein Operator
    (Academic Press inc Elsevier Science, 2006) Ostrovska, S
    Let B-n(f, q; x), n = 1, 2,... be the q-Bernstein polynomials of a function f is an element of C[0, 1]. In the case 0 < q < 1, a sequence {B-n(f, q; x)} generates a positive linear operator B-infinity = B-infinity,B-q on C[0, 1], which is called the limit q-Bernstein operator In this paper, a connection between the smoothness of a function f and the analytic properties of its image under Boo is studied. (c) 2005 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 126
    Citation - Scopus: 136
    Convergence of Generalized Bernstein Polynomials
    (Academic Press inc Elsevier Science, 2002) Il'inskii, A; Ostrovska, S
    Let f is an element of C[0, 1], q is an element of (0, 1), and B-n(f, q; x) be generalized Bernstein polynomials based on the q-integers. These polynomials were introduced by G. M. Phillips in 1997. We study convergence properties of the sequence {B-n(f, q; x)}(n=1)(infinity). It is shown that in general these properties are essentially different from those in the classical case q = 1. (C) 2002 Elsevier Science (USA).
  • Article
    Citation - WoS: 170
    Citation - Scopus: 188
    q-bernstein Polynomials and Their Iterates
    (Academic Press inc Elsevier Science, 2003) Ostrovska, S
    Let B-n (f,q;x), n = 1,2,... be q-Bernstein polynomials of a function f: [0, 1] --> C. The polynomials B-n(f, 1; x) are classical Bernstein polynomials. For q not equal 1 the properties of q-Bernstein polynomials differ essentially from those in the classical case. This paper deals with approximating properties of q-Bernstein polynomials in the case q>1 with respect to both n and q. Some estimates on the rate of convergence are given. In particular, it is proved that for a function f analytic in {z: \z\ < q + ε} the rate of convergence of {B-n(f, q; x)} to f (x) in the norm of C[0, 1] has the order q(-n) (versus 1/n for the classical Bernstein polynomials). Also iterates of q-Bernstein polynomials {B-n(jn) (f, q; x)}, where both n --> infinity and j(n) --> infinity, are studied. It is shown that for q is an element of (0, 1) the asymptotic behavior of such iterates is quite different from the classical case. In particular, the limit does not depend on the rate of j(n) --> infinity. (C) 2003 Elsevier Science (USA). All rights reserved.