Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 6
    Citation - Scopus: 8
    Solution of Initial Value Problems of Cauchy-Kovalevsky Type in the Space of Generalized Monogenic Functions
    (Birkhauser verlag Ag, 2010) Yueksel, Ugur; Celebi, A. Okay
    This paper deals with the initial value problem of the type partial derivative(t)u(t, x) = Lu(t, x), u(0, x) = u(0)(x) where t is an element of R(0)(+) is the time, x is an element of R(n+1), u(0)(x) is a generalized monogenic function and the operator L, acting on a Clifford-algebra-valued function u(t, x) = Sigma(B) u(B)(t, x)e(B) with real-valued components u(B)(t, x), is defined by Lu(t, x) := Sigma(A,B,i) c(B,i)((A)) (t, x)partial derivative(xi) u(B)(t, x)e(A) + Sigma(A,B) d(B)((A)) (t, x)u(B)(t, x)e(A) + Sigma(A)gA(t,x)e(A). We formulate sufficient conditions on the coefficients of the operator L under which L transforms generalized monogenic functions again into generalized monogenic functions. For such an operator the initial value problem (0.1) is solvable for an arbitrary generalized monogenic initial function u(0) and the solution is also generalized monogenic for each t.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 5
    Necessary and Sufficient Conditions for Associated Differential Operators in Quaternionic Analysis and Applications To Initial Value Problems
    (Springer Basel Ag, 2013) Yuksel, Ugur
    This paper deals with the initial value problem of type in the space of generalized regular functions in the sense of Quaternionic Analysis satisfying the differential equation where is the time variable, x runs in a bounded and simply connected domain in is a real number, and is the Cauchy-Fueter operator. We prove necessary and sufficient conditions on the coefficients of the operator under which is associated with the operator , i.e. transforms the set of all solutions of the differential equation into solutions of the same equation for fixedly chosen t. This criterion makes it possible to construct operators for which the initial value problem is uniquely soluble for an arbitrary initial generalized regular function u (0) by the method of associated spaces constructed by W. Tutschke (Teubner Leipzig and Springer Verlag, 1989) and the solution is also generalized regular for each t.