Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Functionalization of Nonwoven Pet Fabrics by Water/O2< Plasma for Biomolecule Mediated Cell Cultivation
    (Wiley-v C H verlag Gmbh, 2010) Sasmazel, Hilal Turkoglu; Manolache, Sorin; Gumusderelioglu, Menemse
    The main target of this study was to obtain COOH functionalities on the surface of 3D, nonwoven polyethylene terephthalate fabrics (NWPFs) by using low pressure water/O-2 plasma assisted treatment. The plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor and then following steps were performed: in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into COCl groups; and hydrolysis under open laboratory conditions using air moisture for final-COOH functionalities. COOH and OH functionalities on the surfaces were detected quantitatively by fluorescent labeling techniques. The COOH-functionalized samples were biologically activated with insulin or heparin molecules by using spacer polyoxyethylene bis-amine (PEO). Successful immobilization was checked qualitatively using electron spectroscopy for chemical analysis (ESCA). The average amount of immobilized insulin and heparin onto NWPF surfaces were determined as 146.09 and 4.81 nmol.cm(-2), respectively. Our results showed that water/O-2 plasma assisted treatment worked very well for functionalization and biofunctionalization of 3D NWPF disks comparing with wet-chemistry methods. Cell culture experiments indicated that functionalization of NWPF disks and/or nanotopographies on the disk surfaces were effective on adhesion and proliferation of L929 mouse fibroblasts.
  • Article
    Citation - Scopus: 5
    Influence of Water/O2 Plasma Treatment on Cellular Responses of Pcl and Pet Surfaces
    (IOS Press, 2011) Türkoǧlu Şaşmazel,H.; Aday,S.; Manolache,S.; Gumusderelioglu,M.
    In this study, low pressure water/O2 plasma treatment was performed in order to obtain COOH functionalities on the surface of poly-ε-caprolactone (PCL) membranes as well as non-woven polyester fabric (NWPF) discs. The plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor and then following steps were performed: in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into -COCl groups; and hydrolysis under open laboratory conditions using air moisture for final-COOH functionalities. COOH and OH functionalities on modified surfaces were detected quantitatively by using fluorescent labeling technique and an UVX 300G sensor. Electron spectroscopy for chemical analysis (ESCA) was used to evaluate the relative surface atomic compositions and the carbon and oxygen linkages located in non-equivalent atomic positions of untreated and modified surfaces. Atomic force microscope (AFM) analysis showed that nanoscale features of the PCL surfaces are dramatically changed during the surface treatments. Scanning electron microscopy (SEM) results indicated the changes in the relatively smooth appearance of the untreated NWPF discs after the plasma treatment. Periodontal ligament (PDL) fibroblasts were used in cell culture studies. Cell culture results showed that plasma treated PCL membranes and NWPF discs were favorable for the PDL cell spreading, growth and viability due to the presence of functional groups and/or nanotopographies on their surfaces. © 2011 - IOS Press and the authors. All rights reserved.