Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 32
    Citation - Scopus: 39
    Backhaul-Aware Optimization of Uav Base Station Location and Bandwidth Allocation for Profit Maximization
    (Ieee-inst Electrical Electronics Engineers inc, 2020) Cicek, Cihan Tugrul; Gultekin, Hakan; Tavli, Bulent; Yanikomeroglu, Halim
    Unmanned Aerial Vehicle Base Stations (UAV-BSs) are envisioned to be an integral component of the next generation Wireless Communications Networks (WCNs) with a potential to create opportunities for enhancing the capacity of the network by dynamically moving the supply towards the demand while facilitating the services that cannot be provided via other means efficiently. A significant drawback of the state-of-the-art have been designing a WCN in which the service-oriented performance measures (e.g., throughput) are optimized without considering different relevant decisions such as determining the location and allocating the resources, jointly. In this study, we address the UAV-BS location and bandwidth allocation problems together to optimize the total network profit. In particular, a Mixed-Integer Non-Linear Programming (MINLP) formulation is developed, in which the location of a single UAV-BS and bandwidth allocations to users are jointly determined. The objective is to maximize the total profit without exceeding the backhaul and access capacities. The profit gained from a specific user is assumed to be a piecewise-linear function of the provided data rate level, where higher data rate levels would yield higher profit. Due to high complexity of the MINLP, we propose an efficient heuristic algorithm with lower computational complexity. We show that, when the UAV-BS location is determined, the resource allocation problem can be reduced to a Multidimensional Binary Knapsack Problem (MBKP), which can be solved in pseudo-polynomial time. To exploit this structure, the optimal bandwidth allocations are determined by solving several MBKPs in a search algorithm. We test the performance of our algorithm with two heuristics and with the MINLP model solved by a commercial solver. Our numerical results show that the proposed algorithm outperforms the alternative solution approaches and would be a promising tool to improve the total network profit.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 14
    A Regime Switching Model for Temperature Modeling and Applications To Weather Derivatives Pricing
    (Springer Heidelberg, 2020) Turkvatan, Aysun; Omay, Tolga; Hayfavi, Azize; Omay, Tolga; Omay, Tolga; Economics; Economics
    In this study, we propose a regime-switching model for temperature dynamics, where the parameters depend on a Markov chain. We improve upon the traditional models by modeling jumps in temperature dynamics via the chain itself. Moreover, we compare the performance of the proposed model with the existing models. The results indicate that the proposed model outperforms in the short time forecast horizon while the forecast performance of the proposed model is in line with the existing models for the long time horizon. It is shown that the proposed model is a relatively better representation of temperature dynamics compared to the existing models. Furthermore, we derive prices of weather derivatives written on several temperature indices.