Search Results

Now showing 1 - 10 of 14
  • Article
    Citation - WoS: 19
    Citation - Scopus: 21
    Interval Criteria for the Forced Oscillation of Super-Half Differential Equations Under Impulse Effects
    (Pergamon-elsevier Science Ltd, 2009) Ozbekler, A.; Zafer, A.
    In this paper, we derive new interval oscillation criteria for a forced super-half-linear impulsive differential equation having fixed moments of impulse actions. The results are extended to a more general class of nonlinear impulsive differential equations. Examples are also given to illustrate the relevance of the results. (C) 2009 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 4
    Second Order Oscillation of Mixed Nonlinear Dynamic Equations With Several Positive and Negative Coefficients
    (Amer inst Mathematical Sciences-aims, 2011) Ozbekler, Abdullah; Zafer, Agacik; Mathematics
    New oscillation criteria are obtained for superlinear and sublinear forced dynamic equations having positive and negative coefficients by means of nonprincipal solutions.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Nonoscillation and Oscillation of Second-Order Impulsive Differential Equations With Periodic Coefficients
    (Pergamon-elsevier Science Ltd, 2012) Ozbekler, A.; Zafer, A.
    In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained. (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 11
    Oscillation Criterion for Half-Linear Differential Equations With Periodic Coefficients
    (Academic Press inc Elsevier Science, 2012) Dosly, O.; Ozbekler, A.; Simon Hilscher, R.
    In this paper, we present an oscillation criterion for second order half-linear differential equations with periodic coefficients. The method is based on the nonexistence of a proper solution of the related modified Riccati equation. Our result can be regarded as an oscillatory counterpart to the nonoscillation criterion by Sugie and Matsumura (2008). These two theorems provide a complete half-linear extension of the oscillation criterion of Kwong and Wong (2003) dealing with the Hill's equation. (C) 2012 Elsevier Inc. All rights reserved.
  • Article
    On the Oscillation of Discrete Volterra Equations With Positive and Negative Nonlinearities
    (Rocky Mt Math Consortium, 2018) Ozbekler, Abdullah
    In this paper, we give new oscillation criteria for discrete Volterra equations having different nonlinearities such as super-linear and sub-linear cases. We also present some new sufficient conditions for oscillation under the effect of the oscillatory forcing term.
  • Article
    Citation - WoS: 27
    Citation - Scopus: 29
    Oscillation of Solutions of Second Order Mixed Nonlinear Differential Equations Under Impulsive Perturbations
    (Pergamon-elsevier Science Ltd, 2011) Ozbekler, A.; Zafer, A.
    New oscillation criteria are obtained for second order forced mixed nonlinear impulsive differential equations of the form (r(t)Phi(alpha)(x'))' + q(t)(Phi)(x) + Sigma(n)(k=1)q(k)(t)Phi beta(k)(x ) = e(t), t not equal theta(I) x(theta(+)(i)) = ajx(theta(+)(i)) = b(i)x'(theta(i)) where Phi(gamma):= ,s vertical bar(gamma-1)s and beta(1) > beta(2) > ... > beta(m) > alpha > beta(m+1)> ... > beta(n) > beta(n) > 0. If alpha = 1 and the impulses are dropped, then the results obtained by Sun and Wong [Y.G. Sun, J.S.W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007) 549-560] are recovered. Examples are given to illustrate the results. (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - Scopus: 5
    Picone Type Formula for Non-Selfadjoint Impulsive Differential Equations With Discontinuous Solutions
    (University of Szeged, 2010) Özbekler,A.; Zafer,A.
    A Picone type formula for second order linear non-selfadjoint impulsive differential equations with discontinuous solutions having fixed moments of impulse actions is derived. Applying the formula, Leighton and Sturm-Picone type comparison theorems as well as several oscillation criteria for impulsive differential equations are obtained.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Oscillation Criteria for Non-Canonical Second-Order Nonlinear Delay Difference Equations With a Superlinear Neutral Term
    (Texas State Univ, 2023) Vidhyaa, Kumar S.; Thandapani, Ethiraju; Alzabut, Jehad; Ozbekler, Abdullah
    We obtain oscillation conditions for non-canonical second-order nonlinear delay difference equations with a superlinear neutral term. To cope with non-canonical types of equations, we propose new oscillation criteria for the main equation when the neutral coefficient does not satisfy any of the conditions that call it to either converge to 0 or & INFIN;. Our approach differs from others in that we first turn into the non-canonical equation to a canonical form and as a result, we only require one condition to weed out non-oscillatory solutions in order to induce oscillation. The conclusions made here are new and have been condensed significantly from those found in the literature. For the sake of confirmation, we provide examples that cannot be included in earlier works.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Principal and Nonprincipal Solutions of Impulsive Dynamic Equations: Leighton and Wong Type Oscillation Theorems
    (Springer, 2023) Zafer, A.; Akgol, S. Dogru
    Principal and nonprincipal solutions of differential equations play a critical role in studying the qualitative behavior of solutions in numerous related differential equations. The existence of such solutions and their applications are already documented in the literature for differential equations, difference equations, dynamic equations, and impulsive differential equations. In this paper, we make a contribution to this field by examining impulsive dynamic equations and proving the existence of such solutions for second-order impulsive dynamic equations. As an illustration, we prove the famous Leighton and Wong oscillation theorems for impulsive dynamic equations. Furthermore, we provide supporting examples to demonstrate the relevance and effectiveness of the results.
  • Article
    Citation - WoS: 2
    Picone Type Formula for Non-Selfadjoint Impulsive Differential Equations With Discontinuous Solutions
    (Univ Szeged, Bolyai institute, 2010) Ozbekler, A.; Zafer, A.
    A Picone type formula for second order linear non-selfadjoint impulsive differential equations with discontinuous solutions having fixed moments of impulse actions is derived. Applying the formula, Leighton and Sturm-Picone type comparison theorems as well as several oscillation criteria for impulsive differential equations are obtained.