1312 results
Search Results
Now showing 1 - 10 of 1312
Article Citation - WoS: 1Citation - Scopus: 1The Effect of Group Behavior on the Pull-Out Capacity of Model Soil Nails in High Plasticity Clay(Springer int Publ Ag, 2024) Akis, Ebru; Bakir, Bahadir Sadik; Yilmaz, Mustafa TolgaSoil nailing technique is widely used in stabilizing roadway and tunnel portal cut excavations. The key parameter in the design of soil nail systems is the pull-out capacity. The pull-out capacity of soil nails can be estimated either from the studies involving similar soil conditions or from the empirical formulas available in the literature. Particularly, it has been documented placing nails closer than a certain minimum distance results in a reduction in the pull-out resistance of a nail placed in sand. However, this requirement has not been discussed for the nail groups located within clay formations. In order to investigate the influence of nail spacing on the pull-out resistance of nails, a series of laboratory pull-out experiments were performed in clay of high plasticity. The results of these experiments showed a remarkable trend. Specifically, there was a significant reduction in the pull-out capacity of a nail when the spacing between nails two times the nail diameter (2 & Oslash;). In contrast, the pull-out capacity of a nail embedded in clay remained unaffected by neighboring nails, provided the spacing was maintained at six times the nail diameter (6 & Oslash;). In addition, during the conducted pull-out tests, it was observed that the failure mode of a single nail and 6 & Oslash; spaced group nails near the surface results as heaving around the single nail. However, in the case of closely positioned (2 & Oslash; spaced) nails, the affected area following nail failure exhibits distinct characteristics, which operate as a group. This leads to the occurrence of failure in the form of heaving around the group of nails.Article Citation - WoS: 12Skeletonization-based beam finite element models for stochastic bicontinuous materials: Application to simulations of nanoporous gold(Cambridge Univ Press, 2018) Soyarslan, Celal; Argeso, Hakan; Borgmann, SwantjeAn efficient representative volume element generation strategy is developed in modeling nanoporous materials. It uses periodic 3D beam finite element (FE) models derived from skeletonization of spinodal-like stochastic microstructures produced by a leveled random field. To mimic stiffening with agglomeration of the mass at junctions, an increased Young's modulus is assigned to the elements within the junction zone. The effective Young's modulus, Poisson's ratio, and universal anisotropy index are computed. A good agreement of the Young's modulus predictions with those obtained from experimental results for phase volume fractions 0.20 < phi(B) < 0.50 is observed. Moreover, the elastic anisotropy index of the generated beam networks shows sufficient proximity to isotropy. Finally, it is demonstrated that, as compared to the simulation statistics of voxel-FE models, for the beam-FE models over 500-fold computational acceleration with 250-fold less memory requirement is provided.Review Citation - WoS: 57Citation - Scopus: 65Application of Minimum Quantity Lubrication Techniques in Machining Process of Titanium Alloy for Sustainability: a Review(Springer London Ltd, 2019) Osman, Khaled Ali; Unver, Hakki Ozgur; Seker, UlviRecently, the manufacturing sector is increasingly keen to apply sustainability at all levels of sustainability from system to products and processes. At the processes level, cutting fluids (CFs) are among the most unsustainable materials and need to be addressed properly in accordance with three main and decisive aspects, also known as the triple bottom line: ecology, society, and economics. Minimum quantity lubrication (MQL) is a promising technique that minimizes the use of CFs, thus improving sustainability. This paper presents a review of the literature available on the use of the MQL technique during different machining processes involving titanium alloys (Ti-6Al-4V). To carry out the study, four search engines were used to focus on the most cited articles published over a span of 17years from 2000 to 2016. The performance and drawbacks are compiled for each eco-friendly technique: dry, MQL, and cryogenics with combinations of MQL and cryogenics, critically considering machining parameters such as cutting speed, feed rate, and output measures, namely surface roughness, tool life, and cutting temperature. After drawing conclusions from critical evaluation of research body, future research avenues in the field are proposed for the academics and industry.Article Investigating of Dynamic Compressive Response of Plain and Fiber-Reinforced Concrete Structures at Various Strain Rates(SAGE Publications Ltd, 2025) Gunay, A.R.; Hafizoglu, H.; Akdeniz, E.; Kaya, C.Across the world, studies on building design are conducted at various scales. The behavior of structures under static loading has been the subject of various studies in the modern era, leading to the development of significant standards and application techniques. However, studies on the behavior of structures under dynamic loading have remained limited. This study investigated the dynamic compressive behavior of plain and fiber-reinforced C60 and C80 concrete samples through experimental studies at room temperature. In addition, this study also investigated dynamic deformation and fracture behavior of plain concrete samples by numerical studies. For this purpose, plain and fiber-reinforced C60 and C80 concrete samples were produced. Experimental studies covered both static and dynamic compression tests. Following the static tests, dynamic test samples with a diameter and length of 10 mm were produced from the static test samples by water jet cutting method and were dynamically compressed in the Split Hopkinson Pressure Bar (SHPB) test setup. Dynamic compression test results showed that the strength of plain and fiber-reinforced C60 and C80 concretes were obtained in the range of 74–162 MPa at an average strain rate of between 139 and 650 s−1. Experimental results also showed that the fiber addition affected the dynamic increase factor (DIF) and impact toughness of both C60 and C80 concretes in a good manner. To compare experimental and numerical results, a dynamic compression test condition was visualized with a high-speed camera and simulated with the Ls-Dyna software using the finite-element method. Numerical studies indicated a good correlation with dynamic compression results in terms of crack formation and fracture progress. © IMechE 2025.Article Citation - WoS: 19Citation - Scopus: 19A Study on the Dark and Illuminated Operation of Al/Si3< Schottky Photodiodes: Optoelectronic Insights(Springer Heidelberg, 2024) Surucu, Ozge; Yildiz, Dilber Esra; Yildirim, MuratThis work extensively investigates the operation of an Al/ Si3N4/p-Si Schottky-type photodiode under dark and varying illumination intensities. The photodiode is fabricated by employing the metal-organic chemical vapor deposition (MOCVD) method. A thorough electrical characterization is performed at room temperature, encompassing measurements of current-voltage (I-V), current-time (I-t), capacitance-time (C-t), and conductance time (G-t). The photodiode's rectification factor and reverse bias area increased under illumination. The relationship between light power density, barrier height, and diode ideality factor is found. The study also found a strong correlation between light intensity and applied voltage on series resistance (R-s) and shunt resistance (R-sh). R-s values are calculated using Cheung's functions, revealing the diode's resistance behavior. The study also examines the photodiode's photoconductivity and photoconductance, finding a non-linear relationship between photocurrent and illumination intensity, suggesting bimolecular recombination. Calculated photosensitivity (K), responsivity (R), and detectivity (D*) values show the device's light response effectiveness, but efficiency decreases at higher illumination intensities. Transient experiments indicate stable and reproducible photocurrent characteristics, revealing photogenerated charge temporal evolution. This study provides a complete understanding of the Al/Si3N4/p-Si Schottky photodiode's behavior under different illumination intensities. The findings advance optoelectronic device knowledge and enable their use in advanced technologies.Article Citation - WoS: 27Citation - Scopus: 35A Wavelet-Based Feature Set for Recognizing Pulse Repetition Interval Modulation Patterns(Tubitak Scientific & Technological Research Council Turkey, 2016) Gencol, Kenan; At, Nuray; Kara, AliThis paper presents a new feature set for the problem of recognizing pulse repetition interval (PRI) modulation patterns. The recognition is based upon the features extracted from the multiresolution decomposition of different types of PRI modulated sequences. Special emphasis is placed on the recognition of jittered and stagger type PRI sequences due to the fact that these types of PRI sequences appear predominantly in modern electronic warfare environments for some specific mission requirements and recognition of them is heavily based on histogram features. We test our method with a broad range of PRI modulation parameters. Simulation results show that the proposed feature set is highly robust and separates jittered, stagger, and other modulation patterns very well. Especially for the stagger type of PRI sequences, wavelet-based features outperform conventional histogram-based features. Advantages of the proposed feature set along with its robustness criteria are analyzed in detail.Article Citation - WoS: 13Citation - Scopus: 16An Analytic Network Process Based Risk Assessment Model for Ppp Hydropower Investments(Vilnius Gediminas Tech Univ, 2021) Akcay, Emre CanerThe number of public-private partnership (PPP) projects has gone up especially in developing countries. The risk assessment of PPP projects is essential in ensuring project success. The objective of this study is to develop an Analytic Network Process (ANP) based risk assessment model for hydropower investments, and a tool to facilitate quantification of risk ratings based on this model. The results show that the three most important risk factors that affect the overall risk rating of a PPP hydropower investment are legal risks, contractor/subcontractor risks, and operator risks. In addition, the three most important risk clusters were identified as stakeholders, government requirements, and resources, whereas market was the least important cluster. The tool that measures the risk rating of a PPP of hydropower project was tested on ten real cases, and satisfactory results were obtained in terms of its predictive capability. The contributions of this research include (1) identification of the risk factors and clusters of factors associated with PPP hydropower investments; (2) determination of the priority of each risk factor and cluster; (3) development a tool that guides the investors through the risk assessment of PPP hydropower investments.Conference Object Citation - WoS: 5Citation - Scopus: 3Evaluation of Efficiencies of Diffuse Allochthonous and Autochthonous Nutrient Input Control in Restoration of a Highly Eutrophic Lake(I W A Publishing, 2002) Muhammetoglu, A; Muhammetoglu, H; Soyupak, SMogan Lake is an important recreational area for Metropolitan Ankara-Turkey. It is a shallow eutrophic lake with a dense growth of macrophytes. The main contributors of nutrients and other pollutants to the lake are the creeks carrying the runoff water from the watershed and upland farming land, in addition to the domestic and industrial wastewater discharges from a nearby town and industries. Hydrodynamic and water quality modeling techniques were used to determine the optimum management schemes for the lake restoration and diffuse pollution control. Management scenarios were devised and tested to control allochthonous and autochthonous nutrient inputs to the lake. Phosphorus and nitrogen load reductions were the main test elements for the control of allochthonous nutrient inputs. The scenario analysis revealed that reduction of phosphorus and nitrogen loads from diffused sources will have a marginal effect on controlling eutrophication if macrophyte growth is left uncontrolled. Scenarios employing macrophyte harvesting and sediment dredging have been evaluated for autochthonous nutrient input control. Sediment dredging alone has been shown to yield the most favorable conditions for water quality improvement in Mogan Lake. Further, control of diffuse pollution was an essential final step to achieve an acceptable long-term sustainable water quality improvement in the lake.Letter Medical Education During the Covid-19 Pandemic: Experience From a Newly Established Medical School(Springer india, 2020) Tulek, Necla; Gonullu, Ugur[No Abstract Available]Article Citation - WoS: 15Contractive Multivalued Maps in Terms of q-functions on Complete Quasimetric Spaces(Springer international Publishing Ag, 2014) Karapinar, Erdal; Romaguera, Salvador; Tirado, PedroIn this paper we prove the existence of a fixed point for multivalued maps satisfying a contraction condition in terms of Q-functions, and via Bianchini-Grandolfi gauge functions, for complete T-0-quasipseudometric spaces. Our results extend, improve, and generalize some recent results in the literature. We present some examples to validate and illustrate our results.

