Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 12
    Citation - Scopus: 12
    A Systematic Approach To Optimizing Energy-Efficient Automated Systems With Learning Models for Thermal Comfort Control in Indoor Spaces
    (Mdpi, 2023) Erisen, Serdar
    Energy-efficient automated systems for thermal comfort control in buildings is an emerging research area that has the potential to be considered through a combination of smart solutions. This research aims to explore and optimize energy-efficient automated systems with regard to thermal comfort parameters, energy use, workloads, and their operation for thermal comfort control in indoor spaces. In this research, a systematic approach is deployed, and building information modeling (BIM) software and energy optimization algorithms are applied at first to thermal comfort parameters, such as natural ventilation, to derive the contextual information and compute the building performance of an indoor environment with Internet of Things (IoT) technologies installed. The open-source dataset from the experiment environment is also applied in training and testing unique black box models, which are examined through the users' voting data acquired via the personal comfort systems (PCS), thus revealing the significance of Fanger's approach and the relationship between people and their surroundings in developing the learning models. The contextual information obtained via BIM simulations, the IoT-based data, and the building performance evaluations indicated the critical levels of energy use and the capacities of the thermal comfort control systems. Machine learning models were found to be significant in optimizing the operation of the automated systems, and deep learning models were momentous in understanding and predicting user activities and thermal comfort levels for well-being; this can optimize energy use in smart buildings.
  • Article
    Citation - Scopus: 88
    Is Chatgpt Accurate and Reliable in Answering Questions Regarding Head and Neck Cancer?
    (Frontiers Media SA, 2023) Kuşcu,O.; Pamuk,A.E.; Sütay Süslü,N.; Hosal,S.
    Background and objective: Chat Generative Pre-trained Transformer (ChatGPT) is an artificial intelligence (AI)-based language processing model using deep learning to create human-like text dialogue. It has been a popular source of information covering vast number of topics including medicine. Patient education in head and neck cancer (HNC) is crucial to enhance the understanding of patients about their medical condition, diagnosis, and treatment options. Therefore, this study aims to examine the accuracy and reliability of ChatGPT in answering questions regarding HNC. Methods: 154 head and neck cancer-related questions were compiled from sources including professional societies, institutions, patient support groups, and social media. These questions were categorized into topics like basic knowledge, diagnosis, treatment, recovery, operative risks, complications, follow-up, and cancer prevention. ChatGPT was queried with each question, and two experienced head and neck surgeons assessed each response independently for accuracy and reproducibility. Responses were rated on a scale: (1) comprehensive/correct, (2) incomplete/partially correct, (3) a mix of accurate and inaccurate/misleading, and (4) completely inaccurate/irrelevant. Discrepancies in grading were resolved by a third reviewer. Reproducibility was evaluated by repeating questions and analyzing grading consistency. Results: ChatGPT yielded “comprehensive/correct” responses to 133/154 (86.4%) of the questions whereas, rates of “incomplete/partially correct” and “mixed with accurate and inaccurate data/misleading” responses were 11% and 2.6%, respectively. There were no “completely inaccurate/irrelevant” responses. According to category, the model provided “comprehensive/correct” answers to 80.6% of questions regarding “basic knowledge”, 92.6% related to “diagnosis”, 88.9% related to “treatment”, 80% related to “recovery – operative risks – complications – follow-up”, 100% related to “cancer prevention” and 92.9% related to “other”. There was not any significant difference between the categories regarding the grades of ChatGPT responses (p=0.88). The rate of reproducibility was 94.1% (145 of 154 questions). Conclusion: ChatGPT generated substantially accurate and reproducible information to diverse medical queries related to HNC. Despite its limitations, it can be a useful source of information for both patients and medical professionals. With further developments in the model, ChatGPT can also play a crucial role in clinical decision support to provide the clinicians with up-to-date information. Copyright © 2023 Kuşcu, Pamuk, Sütay Süslü and Hosal.
  • Review
    Citation - WoS: 17
    Citation - Scopus: 29
    Review of Modern Forest Fire Detection Techniques: Innovations in Image Processing and Deep Learning
    (Mdpi, 2024) Ozel, Berk; Alam, Muhammad Shahab; Khan, Muhammad Umer
    Fire detection and extinguishing systems are critical for safeguarding lives and minimizing property damage. These systems are especially vital in combating forest fires. In recent years, several forest fires have set records for their size, duration, and level of destruction. Traditional fire detection methods, such as smoke and heat sensors, have limitations, prompting the development of innovative approaches using advanced technologies. Utilizing image processing, computer vision, and deep learning algorithms, we can now detect fires with exceptional accuracy and respond promptly to mitigate their impact. In this article, we conduct a comprehensive review of articles from 2013 to 2023, exploring how these technologies are applied in fire detection and extinguishing. We delve into modern techniques enabling real-time analysis of the visual data captured by cameras or satellites, facilitating the detection of smoke, flames, and other fire-related cues. Furthermore, we explore the utilization of deep learning and machine learning in training intelligent algorithms to recognize fire patterns and features. Through a comprehensive examination of current research and development, this review aims to provide insights into the potential and future directions of fire detection and extinguishing using image processing, computer vision, and deep learning.